6 Top Business Analytics Companies to Consider

TIMOTHY KING | May 6, 2019

article image
IT news and analysis outlet CRN recently released its sixth annual 2018 Big Data 100, a vendor listing that identifies the solution providers that are innovating in the space. The list is aimed at helping the providers identify the best partners. Different this year is that the list is broken down into four distinct technology categories, including business analytics, data science and machine learning, big data systems, and data management and integration tools.CRN has gone ahead and published The Coolest Business Analytics Companies included in the list via an interactive slideshow. At Solutions Review, we track the solution providers that have the biggest impact on the enterprise. As such, we’ve read through CRN’s complete rankings, available here, and plucked the 6 top business analytics companies we think matter most. For an even deeper breakdown of the top business analytics solutions, consult our Buyer’s Guide for Business Intelligence and Data Analytics Platforms.

Spotlight

TADA Cognitive Solutions

TADA's cloud-based platform outperforms alternative products by delivering business solutions ten times faster at one-tenth the cost. The magic of TADA starts with the creation of a digital duplicate of your entire operation that is structured using the language of your own business. Then data is harmonized from disparate sources to enable a completely elastic 360 view of your business. TADA aligns organizational thinking, inspiring real-time collaboration and problem solving on any device. By revolutionizing the way your organization utilizes its data, TADA transforms business complexity into a massive advantage.

OTHER ARTICLES

How Machine Learning Can Take Data Science to a Whole New Level

Article | December 21, 2020

Introduction Machine Learning (ML) has taken strides over the past few years, establishing its place in data analytics. In particular, ML has become a cornerstone in data science, alongside data wrangling, and data visualization, among other facets of the field. Yet, we observe many organizations still hesitant when allocating a budget for it in their data pipelines. The data engineer role seems to attract lots of attention, but few companies leverage the machine learning expert/engineer. Could it be that ML can add value to other enterprises too? Let's find out by clarifying certain concepts. What Machine Learning is So that we are all on the same page, let's look at a down-to-earth definition of ML that you can include in a company meeting, a report, or even within an email to a colleague who isn't in this field. Investopedia defines ML as "the concept that a computer program can learn and adapt to new data without human intervention." In other words, if your machine (be it a computer, a smartphone, or even a smart device) can learn on its own, using some specialized software, then it's under the ML umbrella. It's important to note that ML is also a stand-alone field of research, predating most AI systems, even if the two are linked, as we'll see later on. How Machine Learning is different from Statistics It's also important to note that ML is different from Statistics, even if some people like to view the former as an extension of the latter. However, there is a fundamental difference that most people aren't aware of yet. Namely, ML is data-driven while Statistics is, for the most part, model-driven. This statement means that most Stats-based inferences are made by assuming a particular distribution in the data, or the interactions of different variables, and making predictions based on our mathematical models of these distributions. ML may employ distributions in some niche cases, but for the most part, it looks at data as-is, without making any assumptions about it. Machine Learning’s role in data science work Let’s now get to the crux of the matter and explore how ML can be a significant value-add to a data science pipeline. First of all, ML can potentially offer better predictions than most Stats models in terms of accuracy, F1 score, etc. Also, ML can work alongside existing models to form model ensembles that can tackle the problems more effectively. Additionally, if transparency is important to the project stakeholders, there are ML-based options for offering some insight as to what variables are important in the data at hand, for making predictions based on it. Moreover, ML is more parametrized, meaning that you can tweak an ML model more, adapting it to the data you have and ensuring more robustness (i.e., reliability). Finally, you can learn ML without needing a Math degree or any other formal training. The latter, however, may prove useful, if you wish to delve deeper into the topic and develop your own models. This innovation potential is a significant aspect of ML since it's not as easy to develop new models in Stats (unless you are an experienced Statistics researcher) or even in AI. Besides, there are a bunch of various "heuristics" that are part of the ML group of algorithms, facilitating your data science work, regardless of what predictive model you end up using. Machine Learning and AI Many people conflate ML with AI these days. This confusion is partly because many ML models involve artificial neural networks (ANNs) which are the most modern manifestation of AI. Also, many AI systems are employed in ML tasks, so they are referred to as ML systems since AI can be a bit generic as a term. However, not all ML algorithms are AI-related, nor are all AI algorithms under the ML umbrella. This distinction is of import because certain limitations of AI systems (e.g., the need for lots and lots of data) don't apply to most ML models, while AI systems tend to be more time-consuming and resource-heavy than the average ML one. There are several ML algorithms you can use without breaking the bank and derive value from your data through them. Then, if you find that you need something better, in terms of accuracy, you can explore AI-based ones. Keep in mind, however, that some ML models (e.g., Decision Trees, Random Forests, etc.) offer some transparency, while the vast majority of AI ones are black boxes. Learning more about the topic Naturally, it's hard to do this topic justice in a single article. It is so vast that someone can write a book on it! That's what I've done earlier this year, through the Technics Publications publishing house. You can learn more about this topic via this book, which is titled Julia for Machine Learning(Julia is a modern programming language used in data science, among other fields, and it's popular among various technical professionals). Feel free to check it out and explore how you can use ML in your work. Cheers!

Read More

Advanced Data and Analytics Can Add Value in Private Equity Industry!

Article | January 6, 2021

As the organizations go digital the amount of data generated whether in-house or from outside is humongous. In fact, this data keeps increasing with every tick of the clock. There is no doubt about the fact that most of this data can be junk, however, at the same time this is also the data set from where an organization can get a whole lot of insight about itself. It is a given that organizations that don’t use this generated data to build value to their organization are prone to speed up their obsolescence or might be at the edge of losing the competitive edge in the market. Interestingly it is not just the larger firms that can harness this data and analytics to improve their overall performance while achieving operational excellence. Even the small size private equity firms can also leverage this data to create value and develop competitive edge. Thus private equity firms can achieve a high return on an initial investment that is low. Private Equity industry is skeptical about using data and analytics citing the reason that it is meant for larger firms or the firms that have deep pockets, which can afford the revamping cost or can replace their technology infrastructure. While there are few private equity investment professionals who may want to use this advanced data and analytics but are not able to do so for the lack of required knowledge. US Private Equity Firms are trying to understand the importance of advanced data and analytics and are thus seeking professionals with the expertise in dealing with data and advanced analytics. For private equity firms it is imperative to comprehend that data and analytics’ ability is to select the various use cases, which will offer the huge promise for creating value. Top Private Equity firms all over the world can utilize those use cases and create quick wins, which will in turn build momentum for wider transformation of businesses. Pinpointing the right use cases needs strategic thinking by private equity investment professionals, as they work on filling the relevant gaps or even address vulnerabilities. Private Equity professionals most of the time are also found thinking operationally to recognize where can they find the available data. Top private equity firms in the US have to realize that the insights which Big data and advanced analytics offer can result in an incredible opportunity for the growth of private equity industry. As Private Equity firms realize the potential and the power of big data and analytics they will understand the invaluableness of the insights offered by big data and analytics. Private Equity firms can use the analytics insights to study any target organization including its competitive position in the market and plan their next move that may include aggressive bidding for organizations that have shown promise for growth or leaving the organization that is stuffed with loads of underlying issues. But for all these and also to build careers in private equity it is important to have reputed qualification as well. A qualified private equity investment professional will be able to devise information-backed strategies in no time at all. In addition, with Big Data and analytics in place, private equity firms can let go of numerous tasks that are done manually and let the technology do the dirty work. There have been various studies that show how big data and analytics can help a private Equity firm.

Read More

Machine Learning and AI is Supercharging the Modern Technology

Article | April 6, 2020

Today when we look around, we see how technology has revolutionized our world. It has created amazing elements and resources, putting useful intelligence at our fingertips. With all of these revolutions, technology has also made our lives easier, faster, digital and fun. Perhaps at a point when we are talking about technology, Machine learning and artificial intelligence are increasingly popular buzzwords used in modern terms.Machine Learning has proven to be one of the game changer technological advancements of the past decade. In the increasingly competitive corporate world, Machine learning is enabling companies to fast-track digital transformation and move into an age of automation. Some might even argue that AI/ML is required to stay relevant in some verticals, such as digital payments and fraud detection in banking or product recommendations.To understand what machine learning is, it is important to know the concepts of artificial intelligence (AI). It is defined as a program that exhibits cognitive ability similar to that of a human being. Making computers think like humans and solve problems the way we do is one of the main tenets of artificial intelligence.

Read More

Straight to the Top: Why Incorta Beats Top Cloud Vendors in Dresner Advisory’s 2020 Market Study

Article | March 19, 2020

Business agility is the name of the game in 2020. Last year, the US-China trade wars gave business leaders around the world a preview of what it looks like when change and uncertainty become the new normal in the global economy—and for those caught flatfooted, it wasn’t pretty. Here we are nearly one year later and the world has changed dramatically once again. The trade war fiasco? That was just a dress rehearsal compared to what we are living through today with the recent outbreak of COVID-19. At times like these, few things matter more than having visibility into and the freedom to innovate with data to address the necessary business agility.

Read More

Spotlight

TADA Cognitive Solutions

TADA's cloud-based platform outperforms alternative products by delivering business solutions ten times faster at one-tenth the cost. The magic of TADA starts with the creation of a digital duplicate of your entire operation that is structured using the language of your own business. Then data is harmonized from disparate sources to enable a completely elastic 360 view of your business. TADA aligns organizational thinking, inspiring real-time collaboration and problem solving on any device. By revolutionizing the way your organization utilizes its data, TADA transforms business complexity into a massive advantage.

Events