9 Best Data Science Blogs To Follow In 2019

| December 28, 2018

article image
Data science is a fascinating technology that is rapidly evolving. To keep up with the industry, one needs to be prepared to spend some time doing some research and brushing up on skills and knowledge. Whether you’re a professional working in the field of data science or an aspirant who is just getting started, it is always considered to be a good practice to be connected with resources that keep you in touch with the current trends. There are plenty of resources spread across the Internet, but they can sometimes get a little overwhelming. We have listed down 9 of the most useful blogs that are frequently updated and will not only help you in staying connected with trends in data science but will also offer advice and learning resources.

Spotlight

EITAcies Inc

EITACIES Inc is product based and Systems Integrator, a pioneer in providing SOA, Cloud Integration & Middleware, Master Data Management & Data Warehousing, Packaged Enterprise Applications, Cloud based applications & solutions, and Enterprise Mobility Solutions. We specialize in providing turnkey solutions in the above areas. We have proven ability to plan and implement IT solutions that work where it matters most—in practice. Through our massive client, consultant network and strong workforce we have a real-world pulse on the latest IT trends.

OTHER ARTICLES

Bringing big data science to Africa

Article | March 24, 2020

Africa is set to establish its first big data hub, boosting knowledge sharing and information extraction from complex data sets.The hub will enable the continent to access and analyse timely data relating to the Sustainable Development Goals for evidence based decision making, says Oliver Chinganya, director of the Africa Statistics Centre at the United Nations Economic Commission for Africa (UNECA).According to a study, big data is impacting positively in almost every sphere of life, such as in health, aviation, banking, military intelligence and space science.

Read More

How big data can help the homeless

Article | March 12, 2020

Homeless policy needs to join the big data revolution. A data tsunami is transforming our world. Ninety percent of existing data was created in the last two years, and Silicon Valley is leveraging it with powerful analytics to create self-driving cars and to revolutionize business decision-making in ways that drive innovation and efficiency.Unfortunately, this revolution has yet to help the homeless. It is not due to a lack of data. Sacramento alone maintains data on half a million service interactions with more than 65,000 homeless individuals. California is considering integrating the data from its 44 continuums of care to create a richer pool of data. Additionally, researchers are uncovering troves of relevant information in educational and social service databases.These data, however, are only useful if they are aggressively mined for insights, looking for problems to solve and successful practices to replicate. At that juncture California falls short.

Read More

How Machine Learning Can Take Data Science to a Whole New Level

Article | December 21, 2020

Introduction Machine Learning (ML) has taken strides over the past few years, establishing its place in data analytics. In particular, ML has become a cornerstone in data science, alongside data wrangling, and data visualization, among other facets of the field. Yet, we observe many organizations still hesitant when allocating a budget for it in their data pipelines. The data engineer role seems to attract lots of attention, but few companies leverage the machine learning expert/engineer. Could it be that ML can add value to other enterprises too? Let's find out by clarifying certain concepts. What Machine Learning is So that we are all on the same page, let's look at a down-to-earth definition of ML that you can include in a company meeting, a report, or even within an email to a colleague who isn't in this field. Investopedia defines ML as "the concept that a computer program can learn and adapt to new data without human intervention." In other words, if your machine (be it a computer, a smartphone, or even a smart device) can learn on its own, using some specialized software, then it's under the ML umbrella. It's important to note that ML is also a stand-alone field of research, predating most AI systems, even if the two are linked, as we'll see later on. How Machine Learning is different from Statistics It's also important to note that ML is different from Statistics, even if some people like to view the former as an extension of the latter. However, there is a fundamental difference that most people aren't aware of yet. Namely, ML is data-driven while Statistics is, for the most part, model-driven. This statement means that most Stats-based inferences are made by assuming a particular distribution in the data, or the interactions of different variables, and making predictions based on our mathematical models of these distributions. ML may employ distributions in some niche cases, but for the most part, it looks at data as-is, without making any assumptions about it. Machine Learning’s role in data science work Let’s now get to the crux of the matter and explore how ML can be a significant value-add to a data science pipeline. First of all, ML can potentially offer better predictions than most Stats models in terms of accuracy, F1 score, etc. Also, ML can work alongside existing models to form model ensembles that can tackle the problems more effectively. Additionally, if transparency is important to the project stakeholders, there are ML-based options for offering some insight as to what variables are important in the data at hand, for making predictions based on it. Moreover, ML is more parametrized, meaning that you can tweak an ML model more, adapting it to the data you have and ensuring more robustness (i.e., reliability). Finally, you can learn ML without needing a Math degree or any other formal training. The latter, however, may prove useful, if you wish to delve deeper into the topic and develop your own models. This innovation potential is a significant aspect of ML since it's not as easy to develop new models in Stats (unless you are an experienced Statistics researcher) or even in AI. Besides, there are a bunch of various "heuristics" that are part of the ML group of algorithms, facilitating your data science work, regardless of what predictive model you end up using. Machine Learning and AI Many people conflate ML with AI these days. This confusion is partly because many ML models involve artificial neural networks (ANNs) which are the most modern manifestation of AI. Also, many AI systems are employed in ML tasks, so they are referred to as ML systems since AI can be a bit generic as a term. However, not all ML algorithms are AI-related, nor are all AI algorithms under the ML umbrella. This distinction is of import because certain limitations of AI systems (e.g., the need for lots and lots of data) don't apply to most ML models, while AI systems tend to be more time-consuming and resource-heavy than the average ML one. There are several ML algorithms you can use without breaking the bank and derive value from your data through them. Then, if you find that you need something better, in terms of accuracy, you can explore AI-based ones. Keep in mind, however, that some ML models (e.g., Decision Trees, Random Forests, etc.) offer some transparency, while the vast majority of AI ones are black boxes. Learning more about the topic Naturally, it's hard to do this topic justice in a single article. It is so vast that someone can write a book on it! That's what I've done earlier this year, through the Technics Publications publishing house. You can learn more about this topic via this book, which is titled Julia for Machine Learning(Julia is a modern programming language used in data science, among other fields, and it's popular among various technical professionals). Feel free to check it out and explore how you can use ML in your work. Cheers!

Read More

What is the Difference Between Business Intelligence, Data Warehousing and Data Analytics

Article | March 16, 2020

In the age of Big Data, you’ll hear a lot of terms tossed around. Three of the most commonly used are business intelligence,” data warehousing and data analytics.You may wonder, however, what distinguishes these three concepts from each other so let’s take a look. What differentiates business intelligence from the other two on the list is the idea of presentation. Business intelligence is primarily about how you take the insights you’ve developed from the use of analytics to produce action. BI tools include items like To put it simply, business intelligence is the final product. It’s the yummy cooked food that comes out of the frying pan when everything is done.In the flow of things, business intelligence interacts heavily with data warehousing and analytics systems. Information can be fed into analytics packages from warehouses. It then comes out of the analytics software and is routed back into storage and also into BI. Once the BI products have been created, information may yet again be fed back into data storage and warehousing.

Read More

Spotlight

EITAcies Inc

EITACIES Inc is product based and Systems Integrator, a pioneer in providing SOA, Cloud Integration & Middleware, Master Data Management & Data Warehousing, Packaged Enterprise Applications, Cloud based applications & solutions, and Enterprise Mobility Solutions. We specialize in providing turnkey solutions in the above areas. We have proven ability to plan and implement IT solutions that work where it matters most—in practice. Through our massive client, consultant network and strong workforce we have a real-world pulse on the latest IT trends.

Events