About Us | DataScience

| July 12, 2016

article image
DataScience helps the worlds leading companies unlock the value from their data.

Spotlight

MedeFinance Inc

MedeFinance is the recognized leader in healthcare analytics. Our business intelligence services are a revolutionary blend of adaptive web analytics, client services, and a hosted IT environment that empowers healthcare executives to create value by establishing a culture of data-driven decision making and accountability. Unlike one-time consulting projects or large software investments, MedeFinance creates sustainable value through a continuously tailored analytics platform, supported by ongoing education and knowledge support services. Users at all levels of the organization have insight into real-time data to track performance metrics, drill into the details, identify root causes, and take appropriate action to drive operational improvements..

OTHER ARTICLES
BIG DATA MANAGEMENT

How can machine learning detect money laundering?

Article | December 16, 2020

In this article, we will explore different techniques to detect money laundering activities. Notwithstanding, regardless of various expected applications inside the financial services sector, explicitly inside the Anti-Money Laundering (AML) appropriation of Artificial Intelligence and Machine Learning (ML) has been generally moderate. What is Money Laundering, Anti Money Laundering? Money Laundering is where someone unlawfully obtains money and moves it to cover up their crimes. Anti-Money Laundering can be characterized as an activity that forestalls or aims to forestall money laundering from occurring. It is assessed by UNO that, money-laundering exchanges account in one year is 2–5% of worldwide GDP or $800 billion — $3 trillion in USD. In 2019, regulators and governmental offices exacted fines of more than $8.14 billion. Indeed, even with these stunning numbers, gauges are that just about 1 % of unlawful worldwide money related streams are ever seized by the specialists. AML activities in banks expend an over the top measure of manpower, assets, and cash flow to deal with the process and comply with the guidelines. What are the punishments for money laundering? In 2019, Celent evaluated that spending came to $8.3 billion and $23.4 billion for technology and operations, individually. This speculation is designated toward guaranteeing anti-money laundering. As we have seen much of the time, reputational costs can likewise convey a hefty price. In 2012, HSBC laundering of an expected £5.57 billion over at least seven years.   What is the current situation of the banks applying ML to stop money laundering? Given the plenty of new instruments the banks have accessible, the potential feature risk, the measure of capital involved, and the gigantic expenses as a form of fines and punishments, this should not be the situation. A solid impact by nations to curb illicit cash movement has brought about a huge yet amazingly little part of money laundering being recognized — a triumph rate of about 2% average. Dutch banks — ABN Amro, Rabobank, ING, Triodos Bank, and Volksbank announced in September 2019 to work toward a joint transaction monitoring to stand-up fight against Money Laundering. A typical challenge in transaction monitoring, for instance, is the generation of a countless number of alerts, which thusly requires operation teams to triage and process the alarms. ML models can identify and perceive dubious conduct and besides they can classify alerts into different classes such as critical, high, medium, or low risk. Critical or High alerts may be directed to senior experts on a high need to quickly explore the issue. Today is the immense number of false positives, gauges show that the normal, of false positives being produced, is the range of 95 and 99%, and this puts extraordinary weight on banks. The examination of false positives is tedious and costs money. An ongoing report found that banks were spending near 3.01€ billion every year exploring false positives. Establishments are looking for increasing productive ways to deal with crime and, in this specific situation, Machine Learning can end up being a significant tool. Financial activities become productive, the gigantic sum and speed of money related exchanges require a viable monitoring framework that can process exchanges rapidly, ideally in real-time.   What are the types of machine learning algorithms which can identify money laundering transactions? Supervised Machine Learning, it is essential to have historical information with events precisely assigned and input variables appropriately captured. If biases or errors are left in the data without being dealt with, they will get passed on to the model, bringing about erroneous models. It is smarter to utilize Unsupervised Machine Learning to have historical data with events accurately assigned. It sees an obscure pattern and results. It recognizes suspicious activity without earlier information of exactly what a money-laundering scheme resembles. What are the different techniques to detect money laundering? K-means Sequence Miner algorithm: Entering banking transactions, at that point running frequent pattern mining algorithms and mining transactions to distinguish money laundering. Clustering transactions and dubious activities to money laundering lastly show them on a chart. Time Series Euclidean distance: Presenting a sequence matching algorithm to distinguish money laundering detection, utilizing sequential detection of suspicious transactions. This method exploits the two references to recognize dubious transactions: a history of every individual’s account and exchange data with different accounts. Bayesian networks: It makes a model of the user’s previous activities, and this model will be a measure of future customer activities. In the event that the exchange or user financial transactions have. Cluster-based local outlier factor algorithm: The money laundering detection utilizing clustering techniques combination and Outliers.   Conclusion For banks, now is the ideal opportunity to deploy ML models into their ecosystem. Despite this opportunity, increased knowledge and the number of ML implementations prompted a discussion about the feasibility of these solutions and the degree to which ML should be trusted and potentially replace human analysis and decision-making. In order to further exploit and achieve ML promise, banks need to continue to expand on its awareness of ML strengths, risks, and limitations and, most critically, to create an ethical system by which the production and use of ML can be controlled and the feasibility and effect of these emerging models proven and eventually trusted.

Read More

IS YOUR ORGANISATION DATA SCIENCE READY

Article | February 19, 2020

With the increasing amount of data in modern businesses, data science has been receiving a lot of attention. A growing number of companies are, nowadays investing in data science researchers and experts to implement technologies like artificial intelligence and machine learning in their organisation in order to derive actionable insights. But, to place such a massive transformation in an organisation, one has to ensure complete business readiness for data science. Although it is interesting to imagine the potential benefits data science can provide for your organisation, it is worth evaluating how much your organisation is prepared to accommodate a team of data scientists.

Read More
PERFORMANCE MANAGEMENT

Living upto Learn, Re Learn and Unlearn

Article | March 23, 2021

Learn, re Learn and Unlearn The times we are living in, we have to upgrade ourselves constantly in order to stay afloat with the industry be it Logistics, Traditional business, Agriculture, etc.. Technology is constantly changing our lives the way we used to live, living and will live. Anyone who thinks technology is not their cup of tea then I would say he /she will have no place in the world to live. It’s a blessing or curse on human race, only time will tell but effects are already surfacing in the market in the form of Job cut, poverty, some roles are no longer needed or replaced with. Poor is getting poorer and rich is getting richer. Covid19 has not only brought the curse on human race but it has been a blessing in disguise for Tech giants and E-commerce. Technology not only changing the business but every human’s outlook towards life, family structure, the globalization of talents etc. It is nerve wrenching to imagine just what the world will look like in coming 20 years from now. Can all of us adapt to learn, re learn and unlearn quote? Or we have to depend upon countries/Governments to announce Minimum Wage to sustain our basic needs? Uncertainties are looming as the world is coming closer due to technology but emotionally going far. It’s sad to see children, colleagues communicating via emails and messages in the same home and office. Human is losing its touch and feel. Repercussion to resists of learning, unlearning and relearning can bring down choices to none in the long run. Delay in adapting to change can be increasingly expensive as one can lose their place in a world earlier than one think. From 1992, where fewer people used to have facility of internet around , People used to stay in jobs for life but same people are now not wanted in the jobs when they go for interview as they lack in experience just because they have been doing what they were doing in one job without exposing themselves to the world’s new requirement of learn , re learn and unlearn. Chances of this group, getting a job will be negative. World has thrown different types of challenges to people, community, jobs, businesses , those people used to be applauded for remaining On one job for life ,same group of people are looked differently by corporate firms as redundant due to technology. So should people keep changing jobs after few years to just get on to learn, re learn and unlearn or continue waiting for their existing companies to face challenges and go off from the market? Only time and technology will determine what is store for human race next. According to some of the studies, its shown the longer the delay in adopting technology for any given nation, the lower the per capita income of that nation. It shows extreme reliance on Technology but can all of us adopt to the technology at the same rate as its been introduced to us? Can our children or upcoming next generations adopt technology at same scale? Or future is Either Technology or nothing, in Short Job or Jobless there is no in between option? Stephen Goldsmith, director of the Innovations in Government Program and Data-Smart City Solutions at the John F. Kennedy School of Government at Harvard University, said that in some areas, technological advancements have exceeded expectations made in 2000. The Internet also has exploded beyond expectations. From 2000 to 2010, the number of Internet users increased 500 percent, from 361 million worldwide to almost 2 billion. Now, close to 4 billion people throughout the world use the Internet. People go online for everything from buying groceries and clothes to finding a date. They can register their cars online, earn a college degree, shop for houses and apply for a mortgage but again same question is arising , Can each one of us at the same scale use or advance their skill to use technology or we are leaving our senior generations behind and making them cripple in today’s society? Or How about Mid age people who are in their 50s and soon going to take over senior society , Can they get the job and advance their skill to meet technology demands or learn, unlearn and re learn or Not only pandemic but even Technology is going to make human redundant before their actual retirement and their knowledge, skill obsolete. There should be a way forward to achieve balance, absolute reliance on Technology is not only cyber threat to governments but in long term, Unemployment, Creating Jobs or paying minimum wage to unemployed mass will be a huge worry. At the end of the day, humans need basic and then luxury. Technology can bring ease of doing business, connecting businesses and out flows, connecting Wholesalers to end users but in between many jobs, heads will be slashed down and impact will be dire. Therefore Humans have to get themselves prepared to learn, unlearn and re learn to meet today’s technology requirement or prepare themselves for early retirement.

Read More

DRIVING DIGITAL TRANSFORMATION WITH RPA, ML AND WORKFLOW AUTOMATION

Article | February 11, 2020

The latest pace of advancements in technology paves way for businesses to pay attention to digital strategy in order to drive effective digital transformation. Digital strategy focuses on leveraging technology to enhance business performance, specifying the direction where organizations can create new competitive advantages with it. Despite a lot of buzz around its advancement, digital transformation initiatives in most businesses are still in its infancy.Organizations that have successfully implemented and are effectively navigating their way towards digital transformation have seen that deploying a low-code workflow automation platform makes them more efficient.

Read More

Spotlight

MedeFinance Inc

MedeFinance is the recognized leader in healthcare analytics. Our business intelligence services are a revolutionary blend of adaptive web analytics, client services, and a hosted IT environment that empowers healthcare executives to create value by establishing a culture of data-driven decision making and accountability. Unlike one-time consulting projects or large software investments, MedeFinance creates sustainable value through a continuously tailored analytics platform, supported by ongoing education and knowledge support services. Users at all levels of the organization have insight into real-time data to track performance metrics, drill into the details, identify root causes, and take appropriate action to drive operational improvements..

Events