Accelerated Architecture for Manufacturing Intelligence (AMI)

| June 10, 2018

article image
Accelerated Architecture for Manufacturing Intelligence (AMI): Cyber Physical IIoT, Data Management, and Analytics Platform. Business Services. Application Development. Reusable Digital Catalog of assets -Datasets -Visual Analytics -Algorithms & Models -Applications & Custom Tools -Codes & Standards. Cloud Solution / On Premise Deployment. API for private cloud. Deployment on premise option.

Spotlight

Digital Map Products

At Digital Map Products, we provide context to the world around you with the most extensible location intelligence platform available. For more than 19 years, we’ve been on a mission to embed the power of location technology into the workflows of every business and government entity in North America, helping them make better, faster decisions. Our location intelligence platform provides businesses and government agencies with compelling insights to make the most confident decisions. Our Applications. Powerfully visualize and analyze data with our turnkey map-based real estate applications, featuring rich content and best practice workflows. When you’re ready to grow, our extensible applications grow with you.

OTHER ARTICLES

Will Quantum Computers Make Supercomputers Obsolete in the Field of High Performance Computing?

Article | May 12, 2021

If you want an explicit answer without having to know the extra details, then here it is: Yes, there is a possibility that quantum computers can replace supercomputers in the field of high performance computing, under certain conditions. Now, if you want to know how and why this scenario is a possibility and what those conditions are, I’d encourage you to peruse the rest of this article. To start, we will run through some very simple definitions. Definitions If you work in the IT sector, you probably would have heard of the terms ‘high performance computing’, ‘supercomputers’ and ‘quantum computers’ many times. These words are thrown around quite often nowadays, especially in the area of data science and artificial intelligence. Perhaps you would have deduced their meanings from their context of use, but you may not have gotten the opportunity to explicitly sit down and do the required research on what they are and why they are used. Therefore, it is a good idea to go through their definitions, so that you have a better understanding of each concept. High Performance Computing: It is the process of carrying out complex calculations and computations on data at a very high speed. It is much faster than regular computing. Supercomputer: It is a type of computer that is used to efficiently perform powerful and quick computations. Quantum Computing: It is a type of computer that makes use of quantum mechanics’ concepts like entanglement and superposition, in order to carry out powerful computations. Now that you’ve gotten the gist of these concepts, let’s dive in a little more to get a wider scope of how they are implemented throughout the world. Background High performance computing is a thriving area in the sector of information technology, and rightly so, due to the rapid surge in the amount of data that is produced, stored, and processed every second. Over the last few decades, data has become increasingly significant to large corporations, small businesses, and individuals, as a result of its tremendous potential in their growth and profit. By properly analysing data, it is possible to make beneficial predictions and determine optimal strategies. The challenge is that there are huge amounts of data being generated every day. If traditional computers are used to manage and compute all of this data, the outcome would take an irrationally long time to be produced. Massive amounts of resources like time, computational power, and expenses would also be required in order to effectuate such computations. Supercomputers were therefore introduced into the field of technology to tackle this issue. These computers facilitate the computation of huge quantities of data at much higher speeds than a regular computer. They are a great investment for businesses that require data to be processed often and in large amounts at a time. The main advantage of supercomputers is that they can do what regular computers need to do, but much more quickly and efficiently. They have an overall high level of performance. Till date, they have been applied in the following domains: • Nuclear Weapon Design • Cryptography • Medical Diagnosis • Weather Forecasting • Online Gaming • Study of Subatomic Particles • Tackling the COVID-19 Pandemic Quantum computers, on the other hand, use a completely different principle when functioning. Unlike regular computers that use bits as the smallest units of data, quantum computers generate and manipulate ‘qubits’ or ‘quantum bits’, which are subatomic particles like electrons or photons. These qubits have two interesting quantum properties which allow them to powerfully compute data – • Superposition: Qubits, like regular computer bits, can be in a state of 1 or 0. However, they also have the ability to be in both states of 1 and 0 simultaneously. This combined state allows quantum computers to calculate a large number of possible outcomes, all at once. When the final outcome is determined, the qubits fall back into a state of either 1 or 0. This property iscalled superposition. • Entanglement: Pairs of qubits can exist in such a way that two members of a pair of qubits exist in a single quantum state. In such a situation, changing the state of one of the qubits can instantly change the state of the other qubit. This property is called entanglement. Their most promising applications so far include: • Cybersecurity • Cryptography • Drug Designing • Financial Modelling • Weather Forecasting • Artificial Intelligence • Workforce Management Despite their distinct features, both supercomputers and quantum computers are immensely capable of providing users with strong computing facilities. The question is, how do we know which type of system would be the best for high performance computing? A Comparison High performance computing requires robust machines that can deal with large amounts of data - This involves the collection, storage, manipulation, computation, and exchange of data in order to derive insights that are beneficial to the user. Supercomputers have successfully been used so far for such operations. When the concept of a quantum computer first came about, it caused quite a revolution within the scientific community. People recognised its innumerable and widespread abilities, and began working on ways to convert this theoretical innovation into a realistic breakthrough. What makes a quantum computer so different from a supercomputer? Let’s have a look at Table 1.1 below. From the table, we can draw the following conclusions about supercomputers and quantum computers - 1. Supercomputers have been around for a longer duration of time, and are therefore more advanced. Quantum computers are relatively new and still require a great depth of research to sufficiently comprehend their working and develop a sustainable system. 2. Supercomputers are easier to provide inputs to, while quantum computers need a different input mechanism. 3. Supercomputers are fast, but quantum computers are much faster. 4. Supercomputers and quantum computers have some similar applications. 5. Quantum computers can be perceived as extremely powerful and highly advanced supercomputers. Thus, we find that while supercomputers surpass quantum computers in terms of development and span of existence, quantum computers are comparatively much better in terms of capability and performance. The Verdict We have seen what supercomputers and quantum computers are, and how they can be applied in real-world scenarios, particularly in the field of high performance computing. We have also gone through their differences and made significant observations in this regard. We find that although supercomputers have been working great so far, and they continue to provide substantial provisions to researchers, organisations, and individuals who require intense computational power for the quick processing of enormous amounts of data, quantum computers have the potential to perform much better and provide faster and much more adequate results. Thus, quantum computers can potentially make supercomputers obsolete, especially in the field of high performance computing, if and only if researchers are able to come up with a way to make the development, deployment, and maintenance of these computers scalable, feasible, and optimal for consumers.

Read More

CAN QUANTUM COMPUTING BE THE NEW BUZZWORD

Article | March 30, 2020

Quantum Mechanics created their chapter in the history of the early 20th Century. With its regular binary computing twin going out of style, quantum mechanics led quantum computing to be the new belle of the ball! While the memory used in a classical computer encodes binary ‘bits’ – one and zero, quantum computers use qubits (quantum bits). And Qubit is not confined to a two-state solution, but can also exist in superposition i.e., qubits can be employed at 0, 1 and both 1 and 0 at the same time.

Read More

Rethinking and Recontextualizing Context(s) in Natural Language Processing

Article | June 10, 2021

We discursive creatures are construed within a meaningful, bounded communicative environment, namely context(s) and not in a vacuum. Context(s) co-occur in different scenarios, that is, in mundane talk as well as in academic discourse where the goal of natural language communication is mutual intelligibility, hence the negotiation of meaning. Discursive research focuses on the context-sensitive use of the linguistic code and its social practice in particular settings, such as medical talk, courtroom interactions, financial/economic and political discourse which may restrict its validity when ascribing to a theoretical framework and its propositions regarding its application. This is also reflected in the case of artificial intelligence approaches to context(s) such as the development of context-sensitive parsers, context-sensitive translation machines and context-sensitive information systems where the validity of an argument and its propositions is at stake. Context is at the heart of pragmatics or even better said context is the anchor of any pragmatic theory: sociopragmatics, discourse analysis and ethnomethodological conversation analysis. Academic disciplines, such as linguistics, philosophy, anthropology, psychology and literary theory have also studied various aspects of the context phenomena. Yet, the concept of context has remained fuzzy or is generally undefined. It seems that the denotation of the word [context] has become murkier as its uses have been extended in many directions. Context or/ and contexts? Now in order to be “felicitous” integrated into the pragmatic construct, the definition of context needs some delimitations. Depending on the frame of research, context is delimitated to the global surroundings of the phenomenon to be investigated, for instance if its surrounding is of extra-linguistic nature it is called the socio-cultural context, if it comprises features of a speech situation, it is called the linguistic context and if it refers to the cognitive material, that is a mental representation, it is called the cognitive context. Context is a transcendental notion which plays a key role in interpretation. Language is no longer considered as decontextualized sentences. Instead language is seen as embedded in larger activities, through which they become meaningful. In a dynamic outlook on communication, the acts of speaking (which generates a form discourse, for instance, conversational discourse, lecture or speech) and interpreting build contexts and at the same time constrain the building of such contexts. In Heritage’s terminology, “the production of talk is doubly contextual” (Heritage 1984: 242). An utterance relies upon the existing context for its production and interpretation, and it is, in its own right, an event that shapes a new context for the action that will follow. A linguistic context can be decontextualized at a local level, and it can be recontextualized at a global level. There is intra-discursive recontextualization anchored to local decontextualization, and there is interdiscursive recontextualization anchored to global recontextualization. “A given context not only 'legislates' the interpretation of indexical elements; indexical elements can also mold the background of the context” (Ochs, 1990). In the case of recontextualization, in a particular scenario, it is valid to ask what do you mean or how do you mean. Making a reference to context and a reference to meaning helps to clarify when there is a controversy about the communicative status and at the same time provides a frame for the recontextualization. A linguistic context is intrinsically linked to a social context and a subcategory of the latter, the socio-cultural context. The social context can be considered as unmarked, hence a default context, whereas a socio-cultural context can be conceived as a marked type of context in which specific variables are interpreted in a particular mode. Culture provides us, the participants, with a filter mechanism which allows us to interpret a social context in accordance with particular socio-cultural context constraints and requirements. Besides, socially constitutive qualities of context are unavoidable since each interaction updates the existing context and prepares new ground for subsequent interaction. Now, how these aforementioned conceptualizations and views are reflected in NLP? Most of the research work has focused in the linguistic context, that is, in the word level surroundings and the lexical meaning. An approach to producing sense embeddings for the lexical meanings within a lexical knowledge base which lie in a space that is comparable to that of contextualized word vectors. Contextualized word embeddings have been used effectively across several tasks in Natural Language Processing, as they have proved to carry useful semantic information. The task of associating a word in context with the most suitable meaning from a predefined sense inventory is better known as Word Sense Disambiguation (Navigli, 2009). Linguistically speaking, “context encompasses the total linguistic and non-linguistic background of a text” (Crystal, 1991). Notice that the nature of context(s) is clearly crucial when reconstructing the meaning of a text. Therefore, “meaning-in-context should be regarded as a probabilistic weighting, of the list of potential meanings available to the user of the language.” The so-called disambiguating role of context should be taken with a pinch of salt. The main reason for language models such as BERT (Devlin et al., 2019), RoBERTA (Liu et al., 2019) and SBERT (Reimers, 2019) proved to be beneficial in most NLP task is that contextualized embeddings of words encode the semantics defined by their input context. In the same vein, a novel method for contextualized sense representations has recently been employed: SensEmBERT (Scarlini et al., 2020) which computes sense representations that can be applied directly to disambiguation. Still, there is a long way to go regarding context(s) research. The linguistic context is just one of the necessary conditions for sentence embeddedness in “a” context. For interpretation to take place, well-formed sentences and well-formed constructions, that is, linguistic strings which must be grammatical but may be constrained by cognitive sentence-processability and pragmatic relevance, particular linguistic-context and social-context configurations, which make their production and interpretation meaningful, will be needed.

Read More

NEW TECHNOLOGY CAN IMPROVE STORAGE CONGESTION OF AI’S MEMORY

Article | February 12, 2020

The upsurge in data generation and its computing has raised the need for more power, storage and speed. What we call as big data is extremely memory-hungry and power-sapping and to fetch this requirement, engineers have put forward an innovative method. Recently, electrical engineers at Northwestern University and the University of Messina in Italy have developed a new magnetic memory device that could potentially support the surge of data-centric computing, which requires ever-increasing power, storage, and speed. Based on antiferromagnetic (AFM) materials, the device is the smallest of its kind ever demonstrated and operates with record-low electrical current to write data.

Read More

Spotlight

Digital Map Products

At Digital Map Products, we provide context to the world around you with the most extensible location intelligence platform available. For more than 19 years, we’ve been on a mission to embed the power of location technology into the workflows of every business and government entity in North America, helping them make better, faster decisions. Our location intelligence platform provides businesses and government agencies with compelling insights to make the most confident decisions. Our Applications. Powerfully visualize and analyze data with our turnkey map-based real estate applications, featuring rich content and best practice workflows. When you’re ready to grow, our extensible applications grow with you.

Events