Accelerated Data Blending and Analytics for Microsoft Power BI with Alteryx

| July 28, 2016

article image
Any good visual analysis starts with utilizing the right data, and getting that data in the right format is critical to the success of the analysis. Most analysts, however, spend too much time preparing data or relying on others to do it for them—and not enough time on visualizing the data to discover critical business insights.

Spotlight

CopSonic

The CopSonic technology is a new universal contactless communication protocol for digital security, smart detection and IoT connectivity. It is already available for the billions of smart devices existing worldwide: feature phones, smartphones, tablets, TV-box, computers, vocal assistants, game consoles, Internet of Things.

OTHER ARTICLES

Predictive Analytics: Enabling Businesses Achieve Accurate Data Prediction using AI

Article | July 13, 2021

We are living in the age of Big Data, and data has become the heart and the most valuable asset for businesses across industry verticals. In the hyper-competitive market that exists today, data acts as a major contributor to achieving business intelligence and brand equity. Thus, effective data management is the key to accelerating the success of businesses. For effective data management to take place, organizations must ensure that the data that is used is accurate and reliable. With the advent of AI, businesses can now leverage machine learning to predict outcomes using historical data. This is called predictive analytics. With predictive analytics, organizations can predict anything from customer turnover to forecasting equipment maintenance. Moreover, the data that is acquired through predictive analytics is of high quality and very accurate. Let us take a look at how AI enables accurate data prediction and helps businesses to equip themselves for the digital future.

Read More

Forward-thinking Business And The Implications Of Big Data

Article | March 23, 2020

Big data is a modern phenomenon transforming businesses of today. Organisations hold vast swathes of data, from historic and current orders to detailed insights about supply chain operations. This information, combined with external data such as market intelligence and even weather patterns, can provide businesses with a foundation on which to base their planning and decision-making. Business intelligence and analytical solutions pull valuable insights from huge datasets. From workforce optimisation to cost management, access to big data and the tools that manage and evaluate it allows firms to streamline key parts of their business. Adopters of modern solutions are seeing vast improvements in all areas of the company.

Read More

How Machine Learning Can Take Data Science to a Whole New Level

Article | December 21, 2020

Introduction Machine Learning (ML) has taken strides over the past few years, establishing its place in data analytics. In particular, ML has become a cornerstone in data science, alongside data wrangling, and data visualization, among other facets of the field. Yet, we observe many organizations still hesitant when allocating a budget for it in their data pipelines. The data engineer role seems to attract lots of attention, but few companies leverage the machine learning expert/engineer. Could it be that ML can add value to other enterprises too? Let's find out by clarifying certain concepts. What Machine Learning is So that we are all on the same page, let's look at a down-to-earth definition of ML that you can include in a company meeting, a report, or even within an email to a colleague who isn't in this field. Investopedia defines ML as "the concept that a computer program can learn and adapt to new data without human intervention." In other words, if your machine (be it a computer, a smartphone, or even a smart device) can learn on its own, using some specialized software, then it's under the ML umbrella. It's important to note that ML is also a stand-alone field of research, predating most AI systems, even if the two are linked, as we'll see later on. How Machine Learning is different from Statistics It's also important to note that ML is different from Statistics, even if some people like to view the former as an extension of the latter. However, there is a fundamental difference that most people aren't aware of yet. Namely, ML is data-driven while Statistics is, for the most part, model-driven. This statement means that most Stats-based inferences are made by assuming a particular distribution in the data, or the interactions of different variables, and making predictions based on our mathematical models of these distributions. ML may employ distributions in some niche cases, but for the most part, it looks at data as-is, without making any assumptions about it. Machine Learning’s role in data science work Let’s now get to the crux of the matter and explore how ML can be a significant value-add to a data science pipeline. First of all, ML can potentially offer better predictions than most Stats models in terms of accuracy, F1 score, etc. Also, ML can work alongside existing models to form model ensembles that can tackle the problems more effectively. Additionally, if transparency is important to the project stakeholders, there are ML-based options for offering some insight as to what variables are important in the data at hand, for making predictions based on it. Moreover, ML is more parametrized, meaning that you can tweak an ML model more, adapting it to the data you have and ensuring more robustness (i.e., reliability). Finally, you can learn ML without needing a Math degree or any other formal training. The latter, however, may prove useful, if you wish to delve deeper into the topic and develop your own models. This innovation potential is a significant aspect of ML since it's not as easy to develop new models in Stats (unless you are an experienced Statistics researcher) or even in AI. Besides, there are a bunch of various "heuristics" that are part of the ML group of algorithms, facilitating your data science work, regardless of what predictive model you end up using. Machine Learning and AI Many people conflate ML with AI these days. This confusion is partly because many ML models involve artificial neural networks (ANNs) which are the most modern manifestation of AI. Also, many AI systems are employed in ML tasks, so they are referred to as ML systems since AI can be a bit generic as a term. However, not all ML algorithms are AI-related, nor are all AI algorithms under the ML umbrella. This distinction is of import because certain limitations of AI systems (e.g., the need for lots and lots of data) don't apply to most ML models, while AI systems tend to be more time-consuming and resource-heavy than the average ML one. There are several ML algorithms you can use without breaking the bank and derive value from your data through them. Then, if you find that you need something better, in terms of accuracy, you can explore AI-based ones. Keep in mind, however, that some ML models (e.g., Decision Trees, Random Forests, etc.) offer some transparency, while the vast majority of AI ones are black boxes. Learning more about the topic Naturally, it's hard to do this topic justice in a single article. It is so vast that someone can write a book on it! That's what I've done earlier this year, through the Technics Publications publishing house. You can learn more about this topic via this book, which is titled Julia for Machine Learning(Julia is a modern programming language used in data science, among other fields, and it's popular among various technical professionals). Feel free to check it out and explore how you can use ML in your work. Cheers!

Read More

CISA Keep Customer Focus in AI Adoption

Article | February 27, 2020

When it comes to adopting artificial intelligence (AI) and machine learning (ML) capabilities, it’s important to look at its range of effects from many different viewpoints.According to Senior Advisor for AI at the Cybersecurity and Infrastructure Security Agency (CISA) Martin Stanley, his agency wanted to look at adoption through three different perspectives: how CISA was going to use AI, how stakeholders will use AI, and how U.S. adversaries are going to use AI.You have to understand the needs of your stakeholders, but you also have to do it fast,” Stanley said at a Feb. 26 ServiceNow Federal Forum, adding that it’s a challenge to take in all the necessary information and deliver an outcome. AI and ML can help streamline this process. Stanley spoke about how a big percentage of the AI implementation is being purposeful in how the government’s data is managed and taking care of the data and technology is a key part to the adoption process. He also added that helping people by making work more efficient is key to why AI adoption is important saying: At the end of the day, this is all about helping people.

Read More

Spotlight

CopSonic

The CopSonic technology is a new universal contactless communication protocol for digital security, smart detection and IoT connectivity. It is already available for the billions of smart devices existing worldwide: feature phones, smartphones, tablets, TV-box, computers, vocal assistants, game consoles, Internet of Things.

Events