Best Machine Learning Language for Data Science

| June 7, 2019

article image
Best time for Data Scientist . Information Technology is every where . If you want to find restaurant near you , Google is going to help you . If you are searching washroom around you , Google is again here . So what is the next generation Technology trend ? You know the answer that is Machine Learning . In fact , In the current time there are software for all most every sector . The pain area is every software is not intelligent . It can not learn . We can not train them .Only few are intelligent like Google robot . So people are trending to migrate their Non Intelligent platform to an Intelligent one. For this developers are looking for Best Machine Learning Language .

Spotlight

InfoEdge

InfoEdge is working in the design and implementation of Information Technology projects with a particular focus on business intelligence systems, business analytics, data management and big data, offering its customers expertise and technological innovations to support the business. The Company is made up of over 100 professionals with expertise focused on the design and development of decision support systems in companies strategic areas...

OTHER ARTICLES

Transforming the Gaming Industry with AI Analytics

Article | September 2, 2021

In 2020, the gaming market generated over 177 billion dollars, marking an astounding 23% growth from 2019. While it may be incredible how much revenue the industry develops, what’s more impressive is the massive amount of data generated by today’s games. There are more than 2 billion gamers globally, generating over 50 terabytes of data each day. The largest game companies in the world can host 2.5 billion unique gaming sessions in a single month and host 50 billion minutes of gameplay in the same period. The gaming industry and big data are intrinsically linked. Companies that develop capabilities in using that data to understand their customers will have a sizable advantage in the future. But doing this comes with its own unique challenges. Games have many permutations, with different game types, devices, user segments, and monetization models. Traditional analytics approaches, which rely on manual processes and interventions by operators viewing dashboards, are insufficient in the face of the sheer volume of complex data generated by games. Unchecked issues lead to costly incidents or missed opportunities that can significantly impact the user experience or the company’s bottom line. That’s why many leading gaming companies are turning to AI and Machine Learning to address these challenges. Gaming Analytics AI Gaming companies have all the data they need to understand who their users are, how they engage with the product, and whether they are likely to churn. The challenge is gaining valuable business insights into the data and taking action before opportunities pass and users leave the game. AI/ML helps bridge this gap by providing real-time, actionable insights on near limitless data streams so companies can design around these analytics and act more quickly to resolve issues. There are two fundamental categories that companies should hone in on to make the best use of their gaming data: The revenue generating opportunities in the gaming industry is one reason it’s a highly competitive market. Keeping gamers engaged requires emphasizing the user experience and continuous delivery of high-quality content personalized to a company’s most valued customers. Customer Engagement and User Experience Graphics and creative storylines are still vital, and performance issues, in particular, can be a killer for user enjoyment and drive churn. But with a market this competitive, it might not be enough to focus strictly on these issues. Games can get an edge on the competition by investing in gaming AI analytics to understand user behaviors, likes, dislikes, seasonality impacts and even hone in on what makes them churn or come back to the game after a break. AI-powered business monitoring solutions deliver value to the customer experience and create actionable insights to drive future business decisions and game designs to acquire new customers and prevent churn. AI-Enhanced Monetization and Targeted Advertising All games need a way to monetize. It’s especially true in today’s market, where users expect games to always be on and regularly deliver new content and features. A complex combination of factors influences how monetization practices and models enhance or detract from a user’s experience with a game. When monetization frustrates users, it’s typically because of aggressive, irrelevant advertising campaigns or models that aren’t well suited to the game itself or its core players. Observe the most successful products in the market, and one thing you will consistently see is highly targeted interactions. Developers can use metrics gleaned from AI analytics combined with performance marketing to appeal to their existing users and acquire new customers. With AI/ML, games can use personalized ads that cater to users’ or user segments’ behavior in real-time, optimizing the gaming experience and improving monetization outcomes. Using AI based solutions, gaming studios can also quickly identify growth opportunities and trends with real-time insight into high performing monetization models and promotions. Mobile Gaming Company Reduces Revenue Losses from Technical Incident One mobile gaming company suffered a massive loss when a bug in a software update disrupted a marketing promotion in progress. The promotion involved automatically pushing special offers and opportunities for in-app purchases across various gaming and marketing channels. When a bug in an update disrupted the promotions process, the analytics team couldn’t take immediate action because they were unaware of the issue. Their monitoring process was ad hoc, relying on the manual review of multiple dashboards, and unfortunately, by the time they discovered the problem, it was too late. The result was a massive loss for the company – a loss of users, a loss of installations, and in the end, more than 15% revenue loss from in-app purchases. The company needed a more efficient and timely way to track its cross-promotional metrics, installations, and revenue. A machine learning-based approach, like Anodot’s AI-powered gaming analytics, provides notifications in real-time to quickly find and react to any breakdowns in the system and would have prevented the worst of the impacts. Anodot’s AI-Powered Analytics for Gaming The difference between success and failure is how companies respond to the ocean of data generated by their games and their users. Anodot’s AI-powered Gaming Analytics solutions can learn expected behavior in the complex gaming universe across all permutations of gaming, including devices, levels, user segments, pricing, and ads. Anodot’s Gaming AI platform is specifically designed to monitor millions of gaming metrics and help ensure a seamless gaming experience. Anodot monitors every critical metric and establishes a baseline of standard behavior patterns to quickly alert teams to anomalies that might represent issues or opportunities. Analytics teams see how new features impact user behavior, with clear, contextual alerts for spikes, drops, purchases, and app store reviews without the need to comb over dashboards trying to find helpful information. The online gaming space represents one of the more recent areas where rapid data collection and analysis can provide a competitive differentiation. Studios using AI powered analytics will keep themselves and their players ahead of the game.

Read More

3 analytics misconceptions holding your business back (and how to overcome them)

Article | September 2, 2021

It’s game on for digital transformation. Success in this hyper-digital world requires meeting market demand and exceeding customer expectations. And without the use of advanced analytics and AI initiatives to deliver predictive, guided insights, organizations will fall behind. According to IDC, a whopping 83% of CEOs want their organizations to be more data-driven, and the top priority for 87% of CXOs is being an intelligent enterprise. Yet that urgency is often stymied by perceived—but often inaccurate—obstacles.

Read More

DRIVING DIGITAL TRANSFORMATION WITH RPA, ML AND WORKFLOW AUTOMATION

Article | September 2, 2021

The latest pace of advancements in technology paves way for businesses to pay attention to digital strategy in order to drive effective digital transformation. Digital strategy focuses on leveraging technology to enhance business performance, specifying the direction where organizations can create new competitive advantages with it. Despite a lot of buzz around its advancement, digital transformation initiatives in most businesses are still in its infancy.Organizations that have successfully implemented and are effectively navigating their way towards digital transformation have seen that deploying a low-code workflow automation platform makes them more efficient.

Read More

Topic modelling. Variation on themes and the Holy Grail

Article | September 2, 2021

Massive amount of data is collected and stored by companies in the search for the “Holy Grail”. One crucial component is the discovery and application of novel approaches to achieve a more complete picture of datasets provided by the local (sometimes global) event-based analytic strategy that currently dominates a specific field. Bringing qualitative data to life is essential since it provides management decisions’ context and nuance. An NLP perspective for uncovering word-based themes across documents will facilitate the exploration and exploitation of qualitative data which are often hard to “identify” in a global setting. NLP can be used to perform different analysis mapping drivers. Broadly speaking, drivers are factors that cause change and affect institutions, policies and management decision making. Being more precise, a “driver” is a force that has a material impact on a specific activity or an entity, which is contextually dependent, and which affects the financial market at a specific time. (Litterio, 2018). Major drivers often lie outside the immediate institutional environment such as elections or regional upheavals, or non-institutional factors such as Covid or climate change. In Total global strategy: Managing for worldwide competitive advantage, Yip (1992) develops a framework based on a set of four industry globalization drivers, which highlights the conditions for a company to become more global but also reflecting differentials in a competitive environment. In The lexicons: NLP in the design of Market Drivers Lexicon in Spanish, I have proposed a categorization into micro, macro drivers and temporality and a distinction among social, political, economic and technological drivers. Considering the “big picture”, “digging” beyond usual sectors and timeframes is key in state-of-the-art findings. Working with qualitative data. There is certainly not a unique “recipe” when applying NLP strategies. Different pipelines could be used to analyse any sort of textual data, from social media and reviews to focus group notes, blog comments and transcripts to name just a few when a MetaQuant team is looking for drivers. Generally, being textual data the source, it is preferable to avoid manual task on the part of the analyst, though sometimes, depending on the domain, content, cultural variables, etc. it might be required. If qualitative data is the core, then the preferred format is .csv. because of its plain nature which typically handle written responses better. Once the data has been collected and exported, the next step is to do some pre-processing. The basics include normalisation, morphosyntactic analysis, sentence structural analysis, tokenization, lexicalization, contextualization. Just simplify the data to make analysis easier. Topic modelling. Topic modelling refers to the task of recognizing words from the main topics that best describe a document or the corpus of data. LAD (Latent Dirichlet Allocation) is one of the most powerful algorithms with excellent implementations in the Python’s Gensim package. The challenge: how to extract good quality of topics that are clear and meaningful. Of course, this depends mostly on the nature of text pre-processing and the strategy of finding the optimal number of topics, the creation of a lexicon(s) and the corpora. We can say that a topic is defined or construed around the most representative keywords. But are keywords enough? Well, there are some other factors to be observed such as: 1. The variety of topics included in the corpora. 2. The choice of topic modelling algorithm. 3. The number of topics fed to the algorithm. 4. The algorithms tuning parameters. As you probably have noticed finding “the needle in the haystack” is not that easy. And only those who can use creatively NLP will have the advantage of positioning for global success.

Read More

Spotlight

InfoEdge

InfoEdge is working in the design and implementation of Information Technology projects with a particular focus on business intelligence systems, business analytics, data management and big data, offering its customers expertise and technological innovations to support the business. The Company is made up of over 100 professionals with expertise focused on the design and development of decision support systems in companies strategic areas...

Events