BI on Hadoop: What Are You Waiting For?

| October 4, 2018

article image
Big data should have been the rocket fuel that launched business intelligence (BI) into the stratosphere, so why are so many companies still stuck in neutral when it comes to harnessing the power of Apache Hadoop, or, more specifically, BI on Hadoop, for improved business insights? It’s because BI has failed to keep up with the changing data landscape. The cost, rigidity and overhead requirements of legacy BI systems have confined them to a limited set of use cases. Even though Hadoop celebrated its 10th birthday last year, most legacy BI programs still struggle to take advantage of the flexibility and cost innovations it introduced.

Spotlight

Convergence Consulting Group (CCG)

In an increasingly competitive and fast-paced marketplace, executives must make informed strategic business decisions to remain competitive. The challenge has become to organize information to support timely analysis, efficient predictions of changing market factors and the ability to make data-driven decisions. Convergence Consulting Group (CCG) is an award-winning consulting firm with a passion for helping clients solve their operational and strategic challenges through innovative Business Intelligence (BI) services. We believe business intelligence is more than a technical solution; it’s an opportunity to create lasting cultural change across an organization. Our experts focus on quickly gaining a big-picture understanding of your business to develop optimized, tailored BI solutions that empower you to drive greater decision-making at the speed of your data. CCG specializes in deploying solutions that not only provide value to the business but are adopted by users ensuring accountab

OTHER ARTICLES

Here’s How Analytics are Transforming the Marketing Industry

Article | July 13, 2021

When it comes to marketing today, big data analytics has become a powerful being. The raw material marketers need to make sense of the information they are presented with so they can do their jobs with accuracy and excellence. Big data is what empowers marketers to understand their customers based on any online action they take. Thanks to the boom of big data, marketers have learned more about new marketing trends and preferences, and behaviors of the consumer. For example, marketers know what their customers are streaming to what groceries they are ordering, thanks to big data. Data is readily available in abundance due to digital technology. Data is created through mobile phones, social media, digital ads, weblogs, electronic devices, and sensors attached through the internet of things (IoT). Data analytics helps organizations discover newer markets, learn how new customers interact with online ads, and draw conclusions and effects of new strategies. Newer sophisticated marketing analytics software and analytics tools are now being used to determine consumers’ buying patterns and key influencers in decision-making and validate data marketing approaches that yield the best results. With the integration of product management with data science, real-time data capture, and analytics, big data analytics is helping companies increase sales and improve the customer experience. In this article, we will examine how big data analytics are transforming the marketing industry. Personalized Marketing Personalized Marketing has taken an essential place in direct marketing to the consumers. Greeting consumers with their first name whenever they visit the website, sending them promotional emails of their favorite products, or notifying them with personalized recipes based on their grocery shopping are some of the examples of data-driven marketing. When marketers collect critical data marketing pieces about customers at different marketing touchpoints such as their interests, their name, what they like to listen to, what they order most, what they’d like to hear about, and who they want to hear from, this enables marketers to plan their campaigns strategically. Marketers aim for churn prevention and onboarding new customers. With customer’s marketing touchpoints, these insights can be used to improve acquisition rates, drive brand loyalty, increase revenue per customer, and improve the effectiveness of products and services. With these data marketing touchpoints, marketers can build an ideal customer profile. Furthermore, these customer profiles can help them strategize and execute personalized campaigns accordingly. Predictive Analytics Customer behavior can be traced by historical data, which is the best way to predict how customers would behave in the future. It allows companies to correctly predict which customers are interested in their products at the right time and place. Predictive analytics applies data mining, statistical techniques, machine learning, and artificial intelligence for data analysis and predict the customer’s future behavior and activities. Take an example of an online grocery store. If a customer tends to buy healthy and sugar-free snacks from the store now, they will keep buying it in the future too. This predictable behavior from the customer makes it easy for brands to capitalize on that and has been made easy by analytics tools. They can automate their sales and target the said customer. What they would be doing gives the customer chances to make “repeat purchases” based on their predictive behavior. Marketers can also suggest customers purchase products related to those repeat purchases to get them on board with new products. Customer Segmentation Customer segmentation means dividing your customers into strata to identify a specific pattern. For example, customers from a particular city may buy your products more than others, or customers from a certain age demographic prefer some products more than other age demographics. Specific marketing analytics software can help you segment your audience. For example, you can gather data like specific interests, how many times they have visited a place, unique preferences, and demographics such as age, gender, work, and home location. These insights are a golden opportunity for marketers to create bold campaigns optimizing their return on investment. They can cluster customers into specific groups and target these segments with highly relevant data marketing campaigns. The main goal of customer segmentation is to identify any interesting information that can help them increase revenue and meet their goals. Effective customer segmentation can help marketers with: • Identifying most profitable and least profitable customers • Building loyal relationships • Predicting customer patterns • Pricing products accordingly • Developing products based on their interests Businesses continue to invest in collecting high-quality data for perfect customer segmentation, which results in successful efforts. Optimized Ad Campaigns Customers’ social media data like Facebook, LinkedIn, and Twitter makes it easier for marketers to create customized ad campaigns on a larger scale. This means that they can create specific ad campaigns for particular groups and successfully execute an ad campaign. Big data also makes it easier for marketers to run ‘remarketing’ campaigns. Remarketing campaigns ads follow your customers online, wherever they browse, once they have visited your website. Execution of an online ad campaign makes all the difference in its success. Chasing customers with paid ads can work as an effective strategy if executed well. According to the rule 7, prospective customers need to be exposed to an ad minimum of seven times before they make any move on it. When creating online ad campaigns, do keep one thing in mind. Your customers should not feel as if they are being stalked when you make any remarketing campaigns. Space out your ads and their exposure, so they appear naturally rather than coming on as pushy. Consumer Impact Advancements in data science have vastly impacted consumers. Every move they make online is saved and measured. In addition, websites now use cookies to store consumer data, so whenever these consumers visit these websites, product lists based on their shopping habits pop up on the site. Search engines and social media data enhance this. This data can be used to analyze their behavior patterns and market to them accordingly. The information gained from search engines and social media can be used to influence consumers into staying loyal and help their businesses benefit from the same. These implications can be frightening, like seeing personalized ads crop up on their Facebook page or search engine. However, when consumer data is so openly available to marketers, they need to use it wisely and safeguard it from falling into the wrong hands. Fortunately, businesses are taking note and making sure that this information remains secure. Conclusion The future of marketing because of big data and analytics seems bright and optimistic. Businesses are collecting high-quality data in real-time and analyzing it with the help of machine learning and AI; the marketing world seems to be up for massive changes. Analytics are transforming marketing industry to a different level. And with sophisticated marketers behind the wheel, the sky is the only limit. Frequently Asked Questions Why is marketing analytics so important these days? Marketing analytics helps us see how everything plays off each other, and decide how we might want to invest moving forward. Re-prioritizing how you spend your time, how you build out your team, and the resources you invest in channels and efforts are critical steps to achieving marketing team success. What is the use of marketing analytics? Marketing analytics is used to measure how well your marketing efforts are performing and to determine what can be done differently to get better results across marketing channels. Which companies use marketing analytics? Marketing analytics enables you to improve your overall marketing program performance by identifying channel deficiencies, adjusting strategies and tactics as needed, optimizing processes, etc. Companies like Netflix, Sephora, EasyJet, and Spotify use marketing analytics to improve their markeitng performance as well. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is marketing analytics so important these days?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics helps us see how everything plays off each other, and decide how we might want to invest moving forward. Re-prioritizing how you spend your time, how you build out your team and the resources you invest in channels and efforts are critical steps to achieving marketing team success" } },{ "@type": "Question", "name": "What is the use of marketing analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics is used to measure how well your marketing efforts are performing and to determine what can be done differently to get better results across marketing channels." } },{ "@type": "Question", "name": "Which companies use marketing analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics enables you to improve your overall marketing program performance by identifying channel deficiencies, adjusting strategies and tactics as needed, optimizing processes, etc. Companies like Netflix, Sephora, EasyJet, and Spotify use marketing analytics to improve their markeitng performance as well." } }] }

Read More

What is Data Integrity and Why is it Important?

Article | July 19, 2021

In an era of big data, data health has become a pressing issue when more and more data is being stored and processed. Therefore, preserving the integrity of the collected data is becoming increasingly necessary. Understanding the fundamentals of data integrity and how it works is the first step in safeguarding the data. Data integrity is essential for the smooth running of a company. If a company’s data is altered, deleted, or changed, and if there is no way of knowing how it can have significant impact on any data-driven business decisions. Data integrity is the reliability and trustworthiness of data throughout its lifecycle. It is the overall accuracy, completeness, and consistency of data. It can be indicated by lack of alteration between two updates of a data record, which means data is unchanged or intact. Data integrity refers to the safety of data regarding regulatory compliance- like GDPR compliance- and security. A collection of processes, rules, and standards implemented during the design phase maintains the safety and security of data. The information stored in the database will remain secure, complete, and reliable no matter how long it’s been stored; that’s when you know that the integrity of data is safe. A data integrity framework also ensures that no outside forces are harming this data. This term of data integrity may refer to either the state or a process. As a state, the data integrity framework defines a data set that is valid and accurate. Whereas as a process, it describes measures used to ensure validity and accuracy of data set or all data contained in a database or a construct. Data integrity can be enforced at both physical and logical levels. Let us understand the fundamentals of data integrity in detail: Types of Data Integrity There are two types of data integrity: physical and logical. They are collections of processes and methods that enforce data integrity in both hierarchical and relational databases. Physical Integrity Physical integrity protects the wholeness and accuracy of that data as it’s stored and retrieved. It refers to the process of storage and collection of data most accurately while maintaining the accuracy and reliability of data. The physical level of data integrity includes protecting data against different external forces like power cuts, data breaches, unexpected catastrophes, human-caused damages, and more. Logical Integrity Logical integrity keeps the data unchanged as it’s used in different ways in a relational database. Logical integrity checks data accuracy in a particular context. The logical integrity is compromised when errors from a human operator happen while entering data manually into the database. Other causes for compromised integrity of data include bugs, malware, and transferring data from one site within the database to another in the absence of some fields. There are four types of logical integrity: Entity Integrity A database has columns, rows, and tables. These elements need to be as numerous as required for the data to be accurate, but no more than necessary. Entity integrity relies on the primary key, the unique values that identify pieces of data, making sure the data is listed just once and not more to avoid a null field in the table. The feature of relational systems that store data in tables can be linked and utilized in different ways. Referential Integrity Referential integrity means a series of processes that ensure storage and uniform use of data. The database structure has rules embedded into them about the usage of foreign keys and ensures only proper changes, additions, or deletions of data occur. These rules can include limitations eliminating duplicate data entry, accurate data guarantee, and disallowance of data entry that doesn’t apply. Foreign keys relate data that can be shared or null. For example, let’s take a data integrity example, employees that share the same work or work in the same department. Domain Integrity Domain Integrity can be defined as a collection of processes ensuring the accuracy of each piece of data in a domain. A domain is a set of acceptable values a column is allowed to contain. It includes constraints that limit the format, type, and amount of data entered. In domain integrity, all values and categories are set. All categories and values in a database are set, including the nulls. User-Defined Integrity This type of logical integrity involves the user's constraints and rules to fit their specific requirements. The data isn’t always secure with entity, referential, or domain integrity. For example, if an employer creates a column to input corrective actions of the employees, this data would fall under user-defined integrity. Difference between Data Integrity and Data Security Often, the terms data security and data integrity get muddled and are used interchangeably. As a result, the term is incorrectly substituted for data integrity, but each term has a significant meaning. Data integrity and data security play an essential role in the success of each other. Data security means protecting data against unauthorized access or breach and is necessary to ensure data integrity. Data integrity is the result of successful data security. However, the term only refers to the validity and accuracy of data rather than the actual act of protecting data. Data security is one of the many ways to maintain data integrity. Data security focuses on reducing the risk of leaking intellectual property, business documents, healthcare data, emails, trade secrets, and more. Some facets of data security tactics include permissions management, data classification, identity, access management, threat detection, and security analytics. For modern enterprises, data integrity is necessary for accurate and efficient business processes and to make well-intentioned decisions. Data integrity is critical yet manageable for organizations today by backup and replication processes, database integrity constraints, validation processes, and other system protocols through varied data protection methods. Threats to Data Integrity Data integrity can be compromised by human error or any malicious acts. Accidental data alteration during the transfer from one device to another can be compromised. There is an assortment of factors that can affect the integrity of the data stored in databases. Following are a few of the examples: Human Error Data integrity is put in jeopardy when individuals enter information incorrectly, duplicate, or delete data, don’t follow the correct protocols, or make mistakes in implementing procedures to protect data. Transfer Error A transfer error occurs when data is incorrectly transferred from one location in a database to another. This error also happens when a piece of data is present in the destination table but not in the source table in a relational database. Bugs and Viruses Data can be stolen, altered, or deleted by spyware, malware, or any viruses. Compromised Hardware Hardware gets compromised when a computer crashes, a server gets down, or problems with any computer malfunctions. Data can be rendered incorrectly or incompletely, limit, or eliminate data access when hardware gets compromised. Preserving Data Integrity Companies make decisions based on data. If that data is compromised or incorrect, it could harm that company to a great extent. They routinely make data-driven business decisions, and without data integrity, those decisions can have a significant impact on the company’s goals. The threats mentioned above highlight a part of data security that can help preserve data integrity. Minimize the risk to your organization by using the following checklist: Validate Input Require an input validation when your data set is supplied by a known or an unknown source (an end-user, another application, a malicious user, or any number of other sources). The data should be validated and verified to ensure the correct input. Validate Data Verifying data processes haven’t been corrupted is highly critical. Identify key specifications and attributes that are necessary for your organization before you validate the data. Eliminate Duplicate Data Sensitive data from a secure database can easily be found on a document, spreadsheet, email, or shared folders where employees can see it without proper access. Therefore, it is sensible to clean up stray data and remove duplicates. Data Backup Data backups are a critical process in addition to removing duplicates and ensuring data security. Permanent loss of data can be avoided by backing up all necessary information, and it goes a long way. Back up the data as much as possible as it is critical as organizations may get attacked by ransomware. Access Control Another vital data security practice is access control. Individuals in an organization with any wrong intent can harm the data. Implement a model where users who need access can get access is also a successful form of access control. Sensitive servers should be isolated and bolted to the floor, with individuals with an access key are allowed to use them. Keep an Audit Trail In case of a data breach, an audit trail will help you track down your source. In addition, it serves as breadcrumbs to locate and pinpoint the individual and origin of the breach. Conclusion Data collection was difficult not too long ago. It is no longer an issue these days. With the amount of data being collected these days, we must maintain the integrity of the data. Organizations can thus make data-driven decisions confidently and take the company ahead in a proper direction. Frequently Asked Questions What are integrity rules? Precise data integrity rules are short statements about constraints that need to be applied or actions that need to be taken on the data when entering the data resource or while in the data resource. For example, precise data integrity rules do not state or enforce accuracy, precision, scale, or resolution. What is a data integrity example? Data integrity is the overall accuracy, completeness, and consistency of data. A few examples where data integrity is compromised are: • When a user tries to enter a date outside an acceptable range • When a user tries to enter a phone number in the wrong format • When a bug in an application attempts to delete the wrong record What are the principles of data integrity? The principles of data integrity are attributable, legible, contemporaneous, original, and accurate. These simple principles need to be part of a data life cycle, GDP, and data integrity initiatives. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are integrity rules?", "acceptedAnswer": { "@type": "Answer", "text": "Precise data integrity rules are short statements about constraints that need to be applied or actions that need to be taken on the data when entering the data resource or while in the data resource. For example, precise data integrity rules do not state or enforce accuracy, precision, scale, or resolution." } },{ "@type": "Question", "name": "What is a data integrity example?", "acceptedAnswer": { "@type": "Answer", "text": "Data integrity is the overall accuracy, completeness, and consistency of data. A few examples where data integrity is compromised are: When a user tries to enter a date outside an acceptable range When a user tries to enter a phone number in the wrong format When a bug in an application attempts to delete the wrong record" } },{ "@type": "Question", "name": "What are the principles of data integrity?", "acceptedAnswer": { "@type": "Answer", "text": "The principles of data integrity are attributable, legible, contemporaneous, original, and accurate. These simple principles need to be part of a data life cycle, GDP, and data integrity initiatives." } }] }

Read More

7 Data Storage Trends You Cannot Miss in a Data Center

Article | July 23, 2020

Contents: 1 Introduction 2 Top Data Storage Trends That Simplify Data Management 2.1 AI Storage Continues to be The Chief 2.2 Price Markdown in Flash Storage 2.3 Hybrid Multi Cloud for The Win 2.4 Increased Significance of Software-Defined Storage 2.5 Non-Volatile Memory Express (NVMe) Beats Data Center Fabrics 2.6 Acceleration of Storage Class Memory 2.7 Hyperconverged Storage – A Push to Edge Computing 3 The Future of Data Storage 1. Introduction There’s more to data than just to store it. Organizations not only have the responsibility of dealing with a plethora of data, but are also anticipated of safeguarding it. One of the primary alternatives that enterprises are indulging in to keep up with the continuous data expansion is data storage entities and applications. A recent study conducted by Statista revealed that worldwide spending on data storage units is expected to exceed 78 billion U.S. dollars by 2021. Going by these storage stats, it can be certainly said that data is going to be amplified at a much faster rate, and companies do not have a choice but to be geared up for a data boom and still be relevant. When it comes to data management/storage, information technology has risen to all its glory with concepts like machine learning. While the idea of such profound approaches is thrilling, the real question boils down to whether organizations are ready as well as equipped enough to handle them. The answer to this might be NO. But, can companies make changes and still thrive? Most definitely, YES! To make this concept more understandable, here is a list of changes/trends that companies should adopt to make data storage a lot more easy and secure. 2. Top data storage trends that simplify data management Data corruption is one big issue that most companies face. The complications that unfold further because of the corruption of data are even more complicated to resolve. To fix this and other such data storage problems, companies have come up with trends that are resilient and flexible. These trends have the capability of making history in the world of technology, so, you better gear up to learn and later adapt to them. 2.1 AI storage continues to be the chief The speed with which AI hit the IT world just doesn’t seem to slow down even after all these years. We say this because, amongst all other concepts that were and are constantly being introduced, artificial intelligence is one applied science that has made the most amount of innovations. To further add to this, AI is now making enterprise data storage process easier with its various subsets like machine learning and deep learning. This technology is helping companies in accumulating multiple layers of data in a more assorted format. It is automating IT storages including data migrating, archiving, protecting, etc. With AI, companies will be able to control data storage across multiple locations and storage platforms. 2.2 Price markdown in Flash storage As per a report by Markets and Markets, the overall All-Flash Array Market was valued at USD 5.9 billion in 2018 and is expected to reach USD 17.8 billion by 2023, at a CAGR of 24.53% during this period. This growth only states that the need for all-flash storage is only going to broaden. Flash storage has always been a choice that most companies stayed away from mainly because of the price. But with this new trend of adopting flexible data storage ways coming in, flash storage has been offered at a much-depreciated price. The drop in the cost of this storage technology will finally enable businesses of all sizes to invest in this high-performance solution. READ MORE: HOW BUSINESS ANALYTICS ACCELERATES YOUR BUSINESS GROWTH 2.3 Hybrid multi cloud for the win With data growing every minute, just a “cloud” strategy will not be enough. In this wave of data storage services, hybrid multi-cloud is one concept that is helping manage off-premises data. With this growing concept, IT authorities will be able to collect, segregate and store, on-premises, and off-premises data in a much-sophisticated manner. This will enable in centrally managing while reducing the effort of data storage by automating policy-based data placement across a hybrid of multi-cloud and storage types. 2.4 Increased significance of software-defined storage More the data, less reliability on hardware devices – this is the growing attitude of most companies. This fear certainly has the possibility of becoming a reality. Hence, an addition to the cybersecurity strategy that companies can make is adopting software-defined storage. This approach of data storage disconnects the underlying physical storage hardware. It is programmed in a way that can function on policy-based management of resources, automated provision, and computerized storage capacity reassignment. Due to the automated function, scaling up and down of data is also faster. Some of the biggest advantages of this trend will be the governance, data protection, and security it will provide to the entire loop. 2.5 Non-Volatile Memory Express (NVMe) beats data center fabrics NVMe – as ornate as the name sounds, is a concept that is freshly introduced with the aim of making data storage simpler. Non-Volatile Memory Express is a concept that enables accessibility of high-speed storage media. It is a protocol that is showing great results in a short amount of time of its inception. NVMe not only increases the performance value of existing applications, but also enables new applications to real-time workload processing. This feature of high performance and low latency is surely a highlight of the concept. All in all, this entire trend seems to have a lot of potential that are yet to be explored. READ MORE: HOW TO MAXIMIZE VALUE FROM DATA COLLECTED FOR BUSINESSES SUCCESS 2.6 Acceleration of storage class memory Storage class memory is a perfect combination of flash storage and NVMe. This is because it perfectly fills in the gap between server storage and external storage. As data protection is one of the major concerns of enterprises, this upcoming trend, does not only protect data but also continually stores and improves it for easier segregation. A clear advantage that storage class memory has over flash and NVMe storages is that it provides memory-like byte-addressable access to data thus reducing piling up of irrelevant data. Another benefit of this trend is that it indulges in deeper integration of data for ensuring high performance and top-level data security. 2.7 Hyperconverged storage – a push to edge computing The increased demand for hyper converged storage is a result of the growth of hybrid cloud and software-defined infrastructure. Besides these technologies, its suitability for retail settings and remote offices is add on to its already existing set of features. It’s the capability of capturing data from a distance also enables cost-effectiveness and scales down the need to store everything on a public cloud. Hyper converged storage if used in its true essence can simplify IT operations and data storage for enterprises of all sizes. 3. The future of data storage According to the Internet World Stats, more than 4.5 billion internet users around the world relentlessly create an astronomical amount of data. This translates to propel companies into discovering methods or applications that help them store this data safe from harmful ransomware attacks and still use it productively for their advantage. One of the prime changes that can be estimated about the future of data storage is that companies will have to adapt to the rapid changes, and mould their process to enable quick and seamless storage of data. Another enhancement would be that IT managers and responsible authorities would have to be updated and proactive at all times to know what data storage has been newly introduced, and how it can be used for the company’s advantage. Here’s a thing, amongst all the research that enterprises are conducting, not all data storage technologies will end up becoming a hit, and will fulfil the specification of high-speed storage. But, looking at all the efforts that researchers are taking, we don’t think they are going to stop any sooner and neither is the augmentation of data!

Read More

New Spain data center becomes test bed for Microsoft and Telefonica’s expanded partnership

Article | February 27, 2020

Microsoft recently announced that it’s leveraging a new global strategic partnership with Telefonica to jointly develop “go-to-market plans for regions the company does business.Last year during Mobile World Congress 2019, Microsoft took the veil off its newfound relationship with the international telecommunications giant, Telefonica.Highlighted during this year’s announcement was Microsoft’s opening of a new datacenter region in Spain. Microsoft’s new data center comes at a time where the company looks to help expedite Spain’s digital transformation.

Read More

Spotlight

Convergence Consulting Group (CCG)

In an increasingly competitive and fast-paced marketplace, executives must make informed strategic business decisions to remain competitive. The challenge has become to organize information to support timely analysis, efficient predictions of changing market factors and the ability to make data-driven decisions. Convergence Consulting Group (CCG) is an award-winning consulting firm with a passion for helping clients solve their operational and strategic challenges through innovative Business Intelligence (BI) services. We believe business intelligence is more than a technical solution; it’s an opportunity to create lasting cultural change across an organization. Our experts focus on quickly gaining a big-picture understanding of your business to develop optimized, tailored BI solutions that empower you to drive greater decision-making at the speed of your data. CCG specializes in deploying solutions that not only provide value to the business but are adopted by users ensuring accountab

Events