Big Data for the big picture

| June 24, 2019

article image
The economy is a gigantic network. But how can companies make better use of the connections and connections? The start up edge knows how to analyze business relationships. And how the results can maximally benefit.Despite digitization, the dusty file in the closet has become a digital record in many companies  without dust, but with the failure to fundamentally improve processes: new partners are recorded manually, external data is purchased on a case-by-case basis, master data is only cleaned up and updated on demand.

Spotlight

Xactly Corp

Xactly delivers a scalable, enterprise platform for planning and incenting sales organizations, including sales quota and territory planning, incentive compensation management, and predictive analytics. Using this powerful sales performance management (SPM) portfolio, customers mitigate risk, accelerate sales performance, and increase business agility. Combined with Xactly Insights™-- the industry’s only empirical big data platform, Xactly empowers companies with real-time compensation insights and benchmarking data that maximize the bottom line. With an open, standards-based architecture, Xactly seamlessly integrates within an enterprise’s existing infrastructure, with the ability to work with any ERP, CRM, or HCM application, while meeting the highest enterprise standards in security, reliability, and privacy.

OTHER ARTICLES

COMBINATION OF VIRTUAL REALITY AND DATA ANALYTICS

Article | March 30, 2020

Virtual reality is an innovation with boundless opportunities. These can be seen when it is combined with another tech to make new opportunities. At the point when paired with gaming, for instance, VR has empowered the user to enter the virtual universe of the game, for example, in an online casino where the user can enter a virtual casino from the comfort of their own home. When utilized in marketing, property developers can demonstrate houses to potential buyers any place they were on the planet.

Read More

How can machine learning detect money laundering?

Article | December 16, 2020

In this article, we will explore different techniques to detect money laundering activities. Notwithstanding, regardless of various expected applications inside the financial services sector, explicitly inside the Anti-Money Laundering (AML) appropriation of Artificial Intelligence and Machine Learning (ML) has been generally moderate. What is Money Laundering, Anti Money Laundering? Money Laundering is where someone unlawfully obtains money and moves it to cover up their crimes. Anti-Money Laundering can be characterized as an activity that forestalls or aims to forestall money laundering from occurring. It is assessed by UNO that, money-laundering exchanges account in one year is 2–5% of worldwide GDP or $800 billion — $3 trillion in USD. In 2019, regulators and governmental offices exacted fines of more than $8.14 billion. Indeed, even with these stunning numbers, gauges are that just about 1 % of unlawful worldwide money related streams are ever seized by the specialists. AML activities in banks expend an over the top measure of manpower, assets, and cash flow to deal with the process and comply with the guidelines. What are the punishments for money laundering? In 2019, Celent evaluated that spending came to $8.3 billion and $23.4 billion for technology and operations, individually. This speculation is designated toward guaranteeing anti-money laundering. As we have seen much of the time, reputational costs can likewise convey a hefty price. In 2012, HSBC laundering of an expected £5.57 billion over at least seven years.   What is the current situation of the banks applying ML to stop money laundering? Given the plenty of new instruments the banks have accessible, the potential feature risk, the measure of capital involved, and the gigantic expenses as a form of fines and punishments, this should not be the situation. A solid impact by nations to curb illicit cash movement has brought about a huge yet amazingly little part of money laundering being recognized — a triumph rate of about 2% average. Dutch banks — ABN Amro, Rabobank, ING, Triodos Bank, and Volksbank announced in September 2019 to work toward a joint transaction monitoring to stand-up fight against Money Laundering. A typical challenge in transaction monitoring, for instance, is the generation of a countless number of alerts, which thusly requires operation teams to triage and process the alarms. ML models can identify and perceive dubious conduct and besides they can classify alerts into different classes such as critical, high, medium, or low risk. Critical or High alerts may be directed to senior experts on a high need to quickly explore the issue. Today is the immense number of false positives, gauges show that the normal, of false positives being produced, is the range of 95 and 99%, and this puts extraordinary weight on banks. The examination of false positives is tedious and costs money. An ongoing report found that banks were spending near 3.01€ billion every year exploring false positives. Establishments are looking for increasing productive ways to deal with crime and, in this specific situation, Machine Learning can end up being a significant tool. Financial activities become productive, the gigantic sum and speed of money related exchanges require a viable monitoring framework that can process exchanges rapidly, ideally in real-time.   What are the types of machine learning algorithms which can identify money laundering transactions? Supervised Machine Learning, it is essential to have historical information with events precisely assigned and input variables appropriately captured. If biases or errors are left in the data without being dealt with, they will get passed on to the model, bringing about erroneous models. It is smarter to utilize Unsupervised Machine Learning to have historical data with events accurately assigned. It sees an obscure pattern and results. It recognizes suspicious activity without earlier information of exactly what a money-laundering scheme resembles. What are the different techniques to detect money laundering? K-means Sequence Miner algorithm: Entering banking transactions, at that point running frequent pattern mining algorithms and mining transactions to distinguish money laundering. Clustering transactions and dubious activities to money laundering lastly show them on a chart. Time Series Euclidean distance: Presenting a sequence matching algorithm to distinguish money laundering detection, utilizing sequential detection of suspicious transactions. This method exploits the two references to recognize dubious transactions: a history of every individual’s account and exchange data with different accounts. Bayesian networks: It makes a model of the user’s previous activities, and this model will be a measure of future customer activities. In the event that the exchange or user financial transactions have. Cluster-based local outlier factor algorithm: The money laundering detection utilizing clustering techniques combination and Outliers.   Conclusion For banks, now is the ideal opportunity to deploy ML models into their ecosystem. Despite this opportunity, increased knowledge and the number of ML implementations prompted a discussion about the feasibility of these solutions and the degree to which ML should be trusted and potentially replace human analysis and decision-making. In order to further exploit and achieve ML promise, banks need to continue to expand on its awareness of ML strengths, risks, and limitations and, most critically, to create an ethical system by which the production and use of ML can be controlled and the feasibility and effect of these emerging models proven and eventually trusted.

Read More

Can you really trust Amazon Product Recommendation?

Article | January 28, 2021

Since the internet became popular, the way we purchase things has evolved from a simple process to a more complicated process. Unlike traditional shopping, it is not possible to experience the products first-hand when purchasing online. Not only this, but there are more options or variants in a single product than ever before, which makes it more challenging to decide. To not make a bad investment, the consumer has to rely heavily on the customer reviews posted by people who are using the product. However, sorting through relevant reviews at multiple eCommerce platforms of different products and then comparing them to choose can work too much. To provide a solution to this problem, Amazon has come up with sentiment analysis using product review data. Amazon performs sentiment analysis on product review data with Artificial Intelligence technology to develop the best suitable products for the customer. This technology enables Amazon to create products that are most likely to be ideal for the customer. A consumer wants to search for only relevant and useful reviews when deciding on a product. A rating system is an excellent way to determine the quality and efficiency of a product. However, it still cannot provide complete information about the product as ratings can be biased. Textual detailed reviews are necessary to improve the consumer experience and in helping them make informed choices. Consumer experience is a vital tool to understand the customer's behavior and increase sales. Amazon has come up with a unique way to make things easier for their customers. They do not promote products that look similar to the other customer's search history. Instead, they recommend products that are similar to the product a user is searching for. This way, they guide the customer using the correlation between the products. To understand this concept better, we must understand how Amazon's recommendation algorithm has upgraded with time. The history of Amazon's recommendation algorithm Before Amazon started a sentiment analysis of customer product reviews using machine learning, they used the same collaborative filtering to make recommendations. Collaborative filtering is the most used way to recommend products online. Earlier, people used user-based collaborative filtering, which was not suitable as there were many uncounted factors. Researchers at Amazon came up with a better way to recommend products that depend on the correlation between products instead of similarities between customers. In user-based collaborative filtering, a customer would be shown recommendations based on people's purchase history with similar search history. In item-to-item collaborative filtering, people are shown recommendations of similar products to their recent purchase history. For example, if a person bought a mobile phone, he will be shown hints of that phone's accessories. Amazon's Personalization team found that using purchase history at a product level can provide better recommendations. This way of filtering also offered a better computational advantage. User-based collaborative filtering requires analyzing several users that have similar shopping history. This process is time-consuming as there are several demographic factors to consider, such as location, gender, age, etc. Also, a customer's shopping history can change in a day. To keep the data relevant, you would have to update the index storing the shopping history daily. However, item-to-item collaborative filtering is easy to maintain as only a tiny subset of the website's customers purchase a specific product. Computing a list of individuals who bought a particular item is much easier than analyzing all the site's customers for similar shopping history. However, there is a proper science between calculating the relatedness of a product. You cannot merely count the number of times a person bought two items together, as that would not make accurate recommendations. Amazon research uses a relatedness metric to come up with recommendations. If a person purchased an item X, then the item Y will only be related to the person if purchasers of item X are more likely to buy item Y. If users who purchased the item X are more likely to purchase the item Y, then only it is considered to be an accurate recommendation. Conclusion In order to provide a good recommendation to a customer, you must show products that have a higher chance of being relevant. There are countless products on Amazon's marketplace, and the customer will not go through several of them to figure out the best one. Eventually, the customer will become frustrated with thousands of options and choose to try a different platform. So Amazon has to develop a unique and efficient way to recommend the products that work better than its competition. User-based collaborative filtering was working fine until the competition increased. As the product listing has increased in the marketplace, you cannot merely rely on previous working algorithms. There are more filters and factors to consider than there were before. Item-to-item collaborative filtering is much more efficient as it automatically filters out products that are likely to be purchased. This limits the factors that require analysis to provide useful recommendations. Amazon has grown into the biggest marketplace in the industry as customers trust and rely on its service. They frequently make changes to fit the recent trends and provide the best customer experience possible.

Read More

How Should Data Science Teams Deal with Operational Tasks?

Article | April 16, 2021

Introduction There are many articles explaining advanced methods on AI, Machine Learning or Reinforcement Learning. Yet, when it comes to real life, data scientists often have to deal with smaller, operational tasks, that are not necessarily at the edge of science, such as building simple SQL queries to generate lists of email addresses to target for CRM campaigns. In theory, these tasks should be assigned to someone more suited, such as Business Analysts or Data Analysts, but it is not always the case that the company has people dedicated specifically to those tasks, especially if it’s a smaller structure. In some cases, these activities might consume so much of our time that we don’t have much left for the stuff that matters, and might end up doing a less than optimal work in both. That said, how should we deal with those tasks? In one hand, not only we usually don’t like doing operational tasks, but they are also a bad use of an expensive professional. On the other hand, someone has to do them, and not everyone has the necessary SQL knowledge for it. Let’s see some ways in which you can deal with them in order to optimize your team’s time. Reduce The first and most obvious way of doing less operational tasks is by simply refusing to do them. I know it sounds harsh, and it might be impractical depending on your company and its hierarchy, but it’s worth trying it in some cases. By “refusing”, I mean questioning if that task is really necessary, and trying to find best ways of doing it. Let’s say that every month you have to prepare 3 different reports, for different areas, that contain similar information. You have managed to automate the SQL queries, but you still have to double check the results and eventually add/remove some information upon the user’s request or change something in the charts layout. In this example, you could see if all of the 3 different reports are necessary, or if you could adapt them so they become one report that you send to the 3 different users. Anyways, think of ways through which you can reduce the necessary time for those tasks or, ideally, stop performing them at all. Empower Sometimes it can pay to take the time to empower your users to perform some of those tasks themselves. If there is a specific team that demands most of the operational tasks, try encouraging them to use no-code tools, putting it in a way that they fell they will be more autonomous. You can either use already existing solutions or develop them in-house (this could be a great learning opportunity to develop your data scientists’ app-building skills). Automate If you notice it’s a task that you can’t get rid of and can’t delegate, then try to automate it as much as possible. For reports, try to migrate them to a data visualization tool such as Tableau or Google Data Studio and synchronize them with your database. If it’s related to ad hoc requests, try to make your SQL queries as flexible as possible, with variable dates and names, so that you don’t have to re-write them every time. Organize Especially when you are a manager, you have to prioritize, so you and your team don’t get drowned in the endless operational tasks. In order to do this, set aside one or two days in your week which you will assign to that kind of work, and don’t look at it in the remaining 3–4 days. To achieve this, you will have to adapt your workload by following the previous steps and also manage expectations by taking this smaller amount of work hours when setting deadlines. This also means explaining the paradigm shift to your internal clients, so they can adapt to these new deadlines. This step might require some internal politics, negotiating with your superiors and with other departments. Conclusion Once you have mapped all your operational activities, you start by eliminating as much as possible from your pipeline, first by getting rid of unnecessary activities for good, then by delegating them to the teams that request them. Then, whatever is left for you to do, you automate and organize, to make sure you are making time for the relevant work your team has to do. This way you make sure expensive employees’ time is being well spent, maximizing company’s profit.

Read More

Spotlight

Xactly Corp

Xactly delivers a scalable, enterprise platform for planning and incenting sales organizations, including sales quota and territory planning, incentive compensation management, and predictive analytics. Using this powerful sales performance management (SPM) portfolio, customers mitigate risk, accelerate sales performance, and increase business agility. Combined with Xactly Insights™-- the industry’s only empirical big data platform, Xactly empowers companies with real-time compensation insights and benchmarking data that maximize the bottom line. With an open, standards-based architecture, Xactly seamlessly integrates within an enterprise’s existing infrastructure, with the ability to work with any ERP, CRM, or HCM application, while meeting the highest enterprise standards in security, reliability, and privacy.

Events