BIG DATA IS THE NEW BLACK (OIL)

| March 24, 2016

article image
Over 150 years ago, oil was pulled from the ground and thus began a shift in the way Americans functioned. With the advent of the internal combustion engine (that solely operates on oil), people could travel outside of the range of trains and horses, could consume goods from other places more quickly, could experience new products /services and new labor forces were created, suffice it to say society changed.

Spotlight

Incorta

Incorta is the only Unified Data Analytics Platform powered by Direct Data Mapping. Purpose-built to help companies stay ahead of the accelerating rate, volume, and complexity of modern enterprise data, the platform delivers unmatched speed and visibility. Incorta is built with open standards and integrates with cloud-friendly tools and platforms, making it easy to consolidate data in the cloud and extract meaningful insights. By making any data source continuously available for analytics, the platform helps data engineers, data scientists, data analysts, and business leaders make more accurate, timely, and transparent decisions with faster access to richer data sets. Backed by GV (formerly Google Ventures), Kleiner Perkins, M12 (formerly Microsoft Ventures), Telstra Ventures, and Sorenson Capital, Incorta powers analytics for some of the most valuable brands in the world.

OTHER ARTICLES

MODERNIZED REQUIREMENTS OF EFFICIENT DATA SCIENCE SUCCESS ACROSS ORGANIZATIONS

Article | February 23, 2020

Does the success of companies like Google depend on that of the algorithms or that of data? Today’s fascination with artificial intelligence (AI) reflects both our appetite for data and our excitement about the new opportunities in machine learning. Amalio Telenti, Chief Data Scientist and Head of Computational Biology at Vir Biotechnology Inc. argue that newcomers to the field of data science are blinded by the shiny object of magical algorithms and that they forget the critical infrastructures that are needed to create and to manage data in the first place.Data management and infrastructures are the little ugly duckling of data science but they are necessary for a successful program and therefore need to be built with purpose. This requires careful consideration of strategies for data capture, storage of raw and processed data and instruments for retrieval. Beyond the virtues of analysis, there are also the benefits of facilitated retrieval. While there are many solutions for visualization of corporate or industrial data, there is still a need for flexible retrieval tools in the form of search engines that query the diverse sources and forms of data and information that are generated at a given company or institution.

Read More

Taking a qualitative approach to a data-driven market

Article | February 18, 2021

While digital transformation is proving to have many benefits for businesses, what is perhaps the most significant, is the vast amount of data there is available. And now, with an increasing number of businesses turning their focus to online, there is even more to be collected on competitors and markets than ever before. Having all this information to hand may seem like any business owner’s dream, as they can now make insightful and informed commercial decisions based on what others are doing, what customers want and where markets are heading. But according to Nate Burke, CEO of Diginius, a propriety software and solutions provider for ecommerce businesses, data should not be all a company relies upon when making important decisions. Instead, there is a line to be drawn on where data is required and where human expertise and judgement can provide greater value. Undeniably, the power of data is unmatched. With an abundance of data collection opportunities available online, and with an increasing number of businesses taking them, the potential and value of such information is richer than ever before. And businesses are benefiting. Particularly where data concerns customer behaviour and market patterns. For instance, over the recent Christmas period, data was clearly suggesting a preference for ecommerce, with marketplaces such as Amazon leading the way due to greater convenience and price advantages. Businesses that recognised and understood the trend could better prepare for the digital shopping season, placing greater emphasis on their online marketing tactics to encourage purchases and allocating resources to ensure product availability and on-time delivery. While on the other hand, businesses who ignored, or simply did not utilise the information available to them, would have been left with overstocked shops and now, out of season items that would have to be heavily discounted or worse, disposed of. Similarly, search and sales data can be used to understand changing consumer needs, and consequently, what items businesses should be ordering, manufacturing, marketing and selling for the best returns. For instance, understandably, in 2020, DIY was at its peak, with increases in searches for “DIY facemasks”, “DIY decking” and “DIY garden ideas”. For those who had recognised the trend early on, they had the chance to shift their offerings and marketing in accordance, in turn really reaping the rewards. So, paying attention to data certainly does pay off. And thanks to smarter and more sophisticated ways of collecting data online, such as cookies, and through AI and machine learning technologies, the value and use of such information is only likely to increase. The future, therefore, looks bright. But even with all this potential at our fingertips, there are a number of issues businesses may face if their approach relies entirely on a data and insight-driven approach. Just like disregarding its power and potential can be damaging, so can using it as the sole basis upon which important decisions are based. Human error While the value of data for understanding the market and consumer patterns is undeniable, its value is only as rich as the quality of data being inputted. So, if businesses are collecting and analysing their data on their own activity, and then using this to draw meaningful insight, there should be strong focus on the data gathering phase, with attention given to what needs to be collected, why it should be collected, how it will be collected, and whether in fact this is an accurate representation of what it is you are trying to monitor or measure. Human error can become an issue when this is done by individuals or teams who do not completely understand the numbers and patterns they are seeing. There is also an obstacle presented when there are various channels and platforms which are generating leads or sales for the business. In this case, any omission can skew results and provide an inaccurate picture. So, when used in decision making, there is the possibility of ineffective and unsuccessful changes. But while data gathering becomes more and more autonomous, the possibility of human error is lessened. Although, this may add fuel to the next issue. Drawing a line The benefits of data and insights are clear, particularly as the tasks of collection and analysis become less of a burden for businesses and their people thanks to automation and AI advancements. But due to how effortless data collection and analysis is becoming, we can only expect more businesses to be doing it, meaning its ability to offer each individual company something unique is also being lessened. So, businesses need to look elsewhere for their edge. And interestingly, this is where a line should be drawn and human judgement should be used in order to set them apart from the competition and differentiate from what everyone else is doing. It makes perfect sense when you think about it. Your business is unique for a number of reasons, but mainly because of the brand, its values, reputation and perceptions of the services you are upheld by. And it’s usually these aspects that encourage consumers to choose your business rather than a competitor. But often, these intangible aspects are much more difficult to measure and monitor through data collection and analysis, especially in the autonomous, number-driven format that many platforms utilise. Here then, there is a great case for businesses to use their own judgements, expertise and experiences to determine what works well and what does not. For instance, you can begin to determine consumer perceptions towards a change in your product or services, which quantitative data may not be able to pick up until much later when sales figures begin to rise or fall. And while the data will eventually pick it up, it might not necessarily be able to help you decide on what an appropriate alternative solution may be, should the latter occur. Human judgement, however, can listen to and understand qualitative feedback and consumer sentiments which can often provide much more meaningful insights for businesses to base their decisions on. So, when it comes to competitor analysis, using insights generated from figure-based data sets and performance metrics is key to ensuring you are doing the same as the competition. But if you are looking to get ahead, you may want to consider taking a human approach too.

Read More

HEALTHCARE CENTERS ARE TURNING TO AI TO COMBAT COVID-19

Article | April 6, 2020

Artificial Intelligence has emerged as a powerful tool in the time to fight against Covid-19. The technology is used to train computers to leverage big data-enabled models for pattern recognition, interpretation, and prediction using Machine Learning, NLP and Computer Vision. These applications can be effective to diagnose, envision, and treat Covid-19 disease, and they can also assist in managing socio-economic impacts. Since the pandemic spreads quickly, there has been a rush to explore and deploy AI to cure and address the soaring demand of patient treatment infected by Coronavirus.

Read More

A BRAND NEW CHIP DESIGN WILL DRIVE AI DEVELOPMENT

Article | February 20, 2020

The world is now heading into the Fourth Industrial Revolution, as Professor Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, described it in 2016. Artificial Intelligence (AI) is a key driver in this revolution and with it, machine learning is critical. But critical to the whole process is the need to process a tremendous amount of data which in turns boosts the demand for computing power exponentially.A study by OpenAI suggested that the computing power required for AI training surged by more than 300,000 times between 2012 and 2018. This represents a doubling of computing power every three months and two weeks; a number that is significantly quicker than Moore’s Law which has traditionally measured the time it takes to double computing power. Conventional methodology is no longer enough for such significant leaps, and we desperately need a different computing architecture to stay ahead in the game.

Read More

Spotlight

Incorta

Incorta is the only Unified Data Analytics Platform powered by Direct Data Mapping. Purpose-built to help companies stay ahead of the accelerating rate, volume, and complexity of modern enterprise data, the platform delivers unmatched speed and visibility. Incorta is built with open standards and integrates with cloud-friendly tools and platforms, making it easy to consolidate data in the cloud and extract meaningful insights. By making any data source continuously available for analytics, the platform helps data engineers, data scientists, data analysts, and business leaders make more accurate, timely, and transparent decisions with faster access to richer data sets. Backed by GV (formerly Google Ventures), Kleiner Perkins, M12 (formerly Microsoft Ventures), Telstra Ventures, and Sorenson Capital, Incorta powers analytics for some of the most valuable brands in the world.

Events