DRIVING EFFICIENCY WITH BIG DATA

| May 27, 2016

article image
INSIGHTS THIS CREATES THAT ARE KEY TO PRODUCING BUSINESS ADVANTAGES get the competitive edge USE THEM TO BY COMBINING BIG DATA ANALYTICS EFFECTIVE MANAGEMENT OF INSIGHTS © Ericsson 2014 www.ericsson.com/services BECAUSE IT ENABLES THEM TO REALIZE FASTER GROWTH ENHANCED CUSTOMER EXPERIENCE IMPROVED EFFICIENCY Find out more Find out more Find out more THIS HELPS OPERATORS ACROSS BUSINESS IT NETWORKS ACCURATE ADEQUATE A USING THIS DATA, YOU CAN GENERATE INTELLIGENCE THAT IS: ACTIONABLE VELOCITY VOLUME VARIETY V BIG DATA CAN BE DEFINED BY THE 3 Vs: HOW CAN BIG DATA ADD VALUE TO YOUR BUSINESS? DRIVING EFFICIENCY WITH BIG DATA...

Spotlight

Illumio

Illumio, the leader in micro-segmentation, prevents the spread of breaches inside data center and cloud environments. Enterprises such as Morgan Stanley, BNP Paribas, Salesforce, and Oracle NetSuite use Illumio to reduce cyber risk and achieve regulatory compliance.

OTHER ARTICLES

How can we democratize machine learning on IoT devices

Article | February 12, 2020

TinyML, as a concept, concerns the running of ML inference on Ultra Low-Power (ULP 1mW) microcontrollers found on IoT devices. Yet today, various challenges still limit the effective execution of TinyML in the embedded IoT world. As both a concept and community, it is still under development.Here at Ericsson, the focus of our TinyML as-a-Service (TinyMLaaS) activity is to democratize TinyML, enabling manufacturers to start their AI businesses using TinyML, which runs on 8, 16 and 32 bit microcontrollers.Our goal is to make the execution of ML tasks possible and easy in a specific class of devices. These devices are characterized by very constrained hardware and software resources such as sensor and actuator nodes based on these microcontrollers.Below, we present how we can bind the as-a-service model to TinyML. We will provide a high-level technical overview of our concept and introduce the design requirements and building blocks which characterize this emerging paradigm.

Read More
THEORY AND STRATEGIES

Rethinking and Recontextualizing Context(s) in Natural Language Processing

Article | June 10, 2021

We discursive creatures are construed within a meaningful, bounded communicative environment, namely context(s) and not in a vacuum. Context(s) co-occur in different scenarios, that is, in mundane talk as well as in academic discourse where the goal of natural language communication is mutual intelligibility, hence the negotiation of meaning. Discursive research focuses on the context-sensitive use of the linguistic code and its social practice in particular settings, such as medical talk, courtroom interactions, financial/economic and political discourse which may restrict its validity when ascribing to a theoretical framework and its propositions regarding its application. This is also reflected in the case of artificial intelligence approaches to context(s) such as the development of context-sensitive parsers, context-sensitive translation machines and context-sensitive information systems where the validity of an argument and its propositions is at stake. Context is at the heart of pragmatics or even better said context is the anchor of any pragmatic theory: sociopragmatics, discourse analysis and ethnomethodological conversation analysis. Academic disciplines, such as linguistics, philosophy, anthropology, psychology and literary theory have also studied various aspects of the context phenomena. Yet, the concept of context has remained fuzzy or is generally undefined. It seems that the denotation of the word [context] has become murkier as its uses have been extended in many directions. Context or/ and contexts? Now in order to be “felicitous” integrated into the pragmatic construct, the definition of context needs some delimitations. Depending on the frame of research, context is delimitated to the global surroundings of the phenomenon to be investigated, for instance if its surrounding is of extra-linguistic nature it is called the socio-cultural context, if it comprises features of a speech situation, it is called the linguistic context and if it refers to the cognitive material, that is a mental representation, it is called the cognitive context. Context is a transcendental notion which plays a key role in interpretation. Language is no longer considered as decontextualized sentences. Instead language is seen as embedded in larger activities, through which they become meaningful. In a dynamic outlook on communication, the acts of speaking (which generates a form discourse, for instance, conversational discourse, lecture or speech) and interpreting build contexts and at the same time constrain the building of such contexts. In Heritage’s terminology, “the production of talk is doubly contextual” (Heritage 1984: 242). An utterance relies upon the existing context for its production and interpretation, and it is, in its own right, an event that shapes a new context for the action that will follow. A linguistic context can be decontextualized at a local level, and it can be recontextualized at a global level. There is intra-discursive recontextualization anchored to local decontextualization, and there is interdiscursive recontextualization anchored to global recontextualization. “A given context not only 'legislates' the interpretation of indexical elements; indexical elements can also mold the background of the context” (Ochs, 1990). In the case of recontextualization, in a particular scenario, it is valid to ask what do you mean or how do you mean. Making a reference to context and a reference to meaning helps to clarify when there is a controversy about the communicative status and at the same time provides a frame for the recontextualization. A linguistic context is intrinsically linked to a social context and a subcategory of the latter, the socio-cultural context. The social context can be considered as unmarked, hence a default context, whereas a socio-cultural context can be conceived as a marked type of context in which specific variables are interpreted in a particular mode. Culture provides us, the participants, with a filter mechanism which allows us to interpret a social context in accordance with particular socio-cultural context constraints and requirements. Besides, socially constitutive qualities of context are unavoidable since each interaction updates the existing context and prepares new ground for subsequent interaction. Now, how these aforementioned conceptualizations and views are reflected in NLP? Most of the research work has focused in the linguistic context, that is, in the word level surroundings and the lexical meaning. An approach to producing sense embeddings for the lexical meanings within a lexical knowledge base which lie in a space that is comparable to that of contextualized word vectors. Contextualized word embeddings have been used effectively across several tasks in Natural Language Processing, as they have proved to carry useful semantic information. The task of associating a word in context with the most suitable meaning from a predefined sense inventory is better known as Word Sense Disambiguation (Navigli, 2009). Linguistically speaking, “context encompasses the total linguistic and non-linguistic background of a text” (Crystal, 1991). Notice that the nature of context(s) is clearly crucial when reconstructing the meaning of a text. Therefore, “meaning-in-context should be regarded as a probabilistic weighting, of the list of potential meanings available to the user of the language.” The so-called disambiguating role of context should be taken with a pinch of salt. The main reason for language models such as BERT (Devlin et al., 2019), RoBERTA (Liu et al., 2019) and SBERT (Reimers, 2019) proved to be beneficial in most NLP task is that contextualized embeddings of words encode the semantics defined by their input context. In the same vein, a novel method for contextualized sense representations has recently been employed: SensEmBERT (Scarlini et al., 2020) which computes sense representations that can be applied directly to disambiguation. Still, there is a long way to go regarding context(s) research. The linguistic context is just one of the necessary conditions for sentence embeddedness in “a” context. For interpretation to take place, well-formed sentences and well-formed constructions, that is, linguistic strings which must be grammatical but may be constrained by cognitive sentence-processability and pragmatic relevance, particular linguistic-context and social-context configurations, which make their production and interpretation meaningful, will be needed.

Read More

Bringing big data science to Africa

Article | March 24, 2020

Africa is set to establish its first big data hub, boosting knowledge sharing and information extraction from complex data sets.The hub will enable the continent to access and analyse timely data relating to the Sustainable Development Goals for evidence based decision making, says Oliver Chinganya, director of the Africa Statistics Centre at the United Nations Economic Commission for Africa (UNECA).According to a study, big data is impacting positively in almost every sphere of life, such as in health, aviation, banking, military intelligence and space science.

Read More

COMBATING COVID-19 WITH THE HELP OF AI, ANALYTICS AND AUTOMATION

Article | April 9, 2020

Across the world, governments and health authorities are now exploring distinct ways to contain the spread of Covid-19 as the virus has already dispersed across 196 countries in a short time. According to a professor of epidemiology and biostatistics at George Washington University and SAS analytics manager for infectious diseases epidemiology and biostatistics, data, analytics, AI and other technology can play a significant role in helping identify, understand and assist in predicting disease spread and progression.In its response to the virus, China, where the first case of coronavirus reported in late December 2019, started utilizing its sturdy tech sector. The country has specifically deployed AI, data science, and automation technology to track, monitor and defeat the pandemic. Also, tech players in China, such as Alibaba, Baidu, Huawei, among others expedited their company’s healthcare initiatives in their contribution to combat Covid-19.

Read More

Spotlight

Illumio

Illumio, the leader in micro-segmentation, prevents the spread of breaches inside data center and cloud environments. Enterprises such as Morgan Stanley, BNP Paribas, Salesforce, and Oracle NetSuite use Illumio to reduce cyber risk and achieve regulatory compliance.

Events