Extracting Value from Healthcare Data: An Analysis of Industry Leading Data Models

|

article image
The lack of data is not a problem today. The advent of Electronic Health Records (EHR) and regulations such as the Affordable Care Act (ACA) has resulted in billions of terabytes of data for payers and providers. Making effective use of this data however can be a huge challenge. The data deluge has opened up many challenges related to organizing, managing, and sharing healthcare data across the care continuum. Much of the critical information is fragmented and spread across different departments and systems in multiple formats. This makes it difficult to integrate clinical data with financial and operational data to gain a holistic picture.

Spotlight

Coffing Data Warehousing

Nexus is the only tool that works on every major system in your enterprise. It was not enough for CoffingDW to simply connect via a generic ODBC connection, but we wanted a perfect fit with each system to unite entire enterprises. Nexus connects to every flavor of Hadoop, Teradata, Netezza, Oracle, Cloudera, Hortonworks, IBM Big Insights, DB2, Greenplum, Redshift, ParAccel, PDW, and can even query Excel.

OTHER ARTICLES

What impact are data analytics having on security

Article | February 26, 2020

Data analytics are bringing big data to security and changing the way we look at security solutions. In video surveillance, analytics have opened a wide host of applications that customers can use to gather valuable business insights from video data. This not only increases the complexity of the customer solution but brings together stakeholders from departments previously remote in the security design decision. In 2020, a customer-centric design process will be crucial to understand a customer’s business beyond the security or IT department. Keep an open mind while exploring the potential of each new technology and tailor your security design solutions into a catalyst for your customer’s success. Always remember that with big data comes big responsibility.

Read More

How Data Analytics in The Hospitality Industry Can be Helpful?

Article | February 26, 2020

In recent years, we have seen more industries adopt data analytics as they realize how important it is. Even the hotel industry is not left behind in this. This is because the hospitality industry is data-rich. And the key to maintaining a competitive advantage has come down to ‘how hotels manage and analyze this data’. With the changes taking place in the hospitality industry, data analysis can help you gain meaningful insights that can redefine the way hotels conduct business.

Read More
DATA ARCHITECTURE

Evolution of capabilities of Data Platforms & data ecosystem

Article | February 26, 2020

Data Platforms and frameworks have been constantly evolving. At some point of time; we are excited by Hadoop (well for almost 10 years); followed by Snowflake or as I say Snowflake Blizzard (who managed to launch biggest IPO win historically) and the Google (Google solves problems and serves use cases in a way that few companies can match). The end of the data warehouse Once upon a time, life was simple; or at least, the basic approach to Business Intelligence was fairly easy to describe… A process of collecting information from systems, building a repository of consistent data, and bolting on one or more reporting and visualisation tools which presented information to users. Data used to be managed in expensive, slow, inaccessible SQL data warehouses. SQL systems were notorious for their lack of scalability. Their demise is coming from a few technological advances. One of these is the ubiquitous, and growing, Hadoop. On April 1, 2006, Apache Hadoop was unleashed upon Silicon Valley. Inspired by Google, Hadoop’s primary purpose was to improve the flexibility and scalability of data processing by splitting the process into smaller functions that run on commodity hardware. Hadoop’s intent was to replace enterprise data warehouses based on SQL. Unfortunately, a technology used by Google may not be the best solution for everyone else. It’s not that others are incompetent: Google solves problems and serves use cases in a way that few companies can match. Google has been running massive-scale applications such as its eponymous search engine, YouTube and the Ads platform. The technologies and infrastructure that make the geographically distributed offerings perform at scale are what make various components of Google Cloud Platform enterprise ready and well-featured. Google has shown leadership in developing innovations that have been made available to the open-source community and are being used extensively by other public cloud vendors and Gartner clients. Examples of these include the Kubernetes container management framework, TensorFlow machine learning platform and the Apache Beam data processing programming model. GCP also uses open-source offerings in its cloud while treating third-party data and analytics providers as first-class citizens on its cloud and providing unified billing for its customers. The examples of the latter include DataStax, Redis Labs, InfluxData, MongoDB, Elastic, Neo4j and Confluent. Silicon Valley tried to make Hadoop work. The technology was extremely complicated and nearly impossible to use efficiently. Hadoop’s lack of speed was compounded by its focus on unstructured data — you had to be a “flip-flop wearing” data scientist to truly make use of it. Unstructured datasets are very difficult to query and analyze without deep knowledge of computer science. At one point, Gartner estimated that 70% of Hadoop deployments would not achieve the goal of cost savings and revenue growth, mainly due to insufficient skills and technical integration difficulties. And seventy percent seems like an understatement. Data storage through the years: from GFS to Snowflake or Snowflake blizzard Developing in parallel with Hadoop’s journey was that of Marcin Zukowski — co-founder and CEO of Vectorwise. Marcin took the data warehouse in another direction, to the world of advanced vector processing. Despite being almost unheard of among the general public, Snowflake was actually founded back in 2012. Firstly, Snowflake is not a consumer tech firm like Netflix or Uber. It's business-to-business only, which may explain its high valuation – enterprise companies are often seen as a more "stable" investment. In short, Snowflake helps businesses manage data that's stored on the cloud. The firm's motto is "mobilising the world's data", because it allows big companies to make better use of their vast data stores. Marcin and his teammates rethought the data warehouse by leveraging the elasticity of the public cloud in an unexpected way: separating storage and compute. Their message was this: don’t pay for a data warehouse you don’t need. Only pay for the storage you need, and add capacity as you go. This is considered one of Snowflake’s key innovations: separating storage (where the data is held) from computing (the act of querying). By offering this service before Google, Amazon, and Microsoft had equivalent products of their own, Snowflake was able to attract customers, and build market share in the data warehousing space. Naming the company after a discredited database concept was very brave. For those of us not in the details of the Snowflake schema, it is a logical arrangement of tables in a multidimensional database such that the entity-relationship diagram resembles a snowflake shape. … When it is completely normalized along all the dimension tables, the resultant structure resembles a snowflake with the fact table in the middle. Needless to say, the “snowflake” schema is as far from Hadoop’s design philosophy as technically possible. While Silicon Valley was headed toward a dead end, Snowflake captured an entire cloud data market.

Read More

GOVERNMENTS LEVERAGING BIG DATA INNOVATIONS TO TACKLE CORONAVIRUS

Article | February 26, 2020

The outbreak of coronavirus has taken many countries under its hood. Most of them are suffering from economic loss and a higher mortality rate. Amid this, governments are in a great dilemma how to handle the circumstances around the falling economy and upsurging coronavirus infections. In order to get better hold onto situations across their countries, they are moving towards innovative technology adoption. Out of all the new-age technologies, big data and data analytics can serve with a great opportunity, where governments across various nations can understand the outbreak analytics.

Read More

Spotlight

Coffing Data Warehousing

Nexus is the only tool that works on every major system in your enterprise. It was not enough for CoffingDW to simply connect via a generic ODBC connection, but we wanted a perfect fit with each system to unite entire enterprises. Nexus connects to every flavor of Hadoop, Teradata, Netezza, Oracle, Cloudera, Hortonworks, IBM Big Insights, DB2, Greenplum, Redshift, ParAccel, PDW, and can even query Excel.

Events