Hadoop Tutorial for Beginners | Hadoop Introduction | What is Hadoop?

| May 9, 2017

article image
DataFlair's Big Data Hadoop Tutorial Video for Beginners takes you through various concepts of Hadoop: What is Hadoop, Introduction to Hadoop, Why Hadoop, Hadoop Architecture, Hadoop Ecosystem Components, Hadoop Nodes – master & slave, Hadoop Daemons, Hadoop Characteristics, and Features of Hadoop. This Hadoop tutorial video covers:

Spotlight

SnapLogic

SnapLogic is the only elastic integration platform as a service (iPaaS) that delivers real-time, event-driven application integration and batch big data integration for analytics in a single cloud integration and data integration platform. Organizations of all sizes rely on our fast, multi-point and modern iPaaS to rapidly deliver Amazon Redshift integration, Salesforce integration, ServiceNow integration, integration for the Workday® solution and more. Pre-built intelligent connectors called Snaps enable cloud to cloud and cloud (including social data sources like Facebook, Twitter and LinkedIn) to on-premises integration with ERP applications like SAP and Oracle EBS, Hadoop and relational databases and files. By rapidly integrating all of your data, applications and APIs, the SnapLogic Elastic Integration Platform ensures that you’re getting maximum adoption out of all your SaaS applications, cloud and legacy platforms and big data investments. With SnapLogic, cloud application and b

OTHER ARTICLES

How big data can help the homeless

Article | March 12, 2020

Homeless policy needs to join the big data revolution. A data tsunami is transforming our world. Ninety percent of existing data was created in the last two years, and Silicon Valley is leveraging it with powerful analytics to create self-driving cars and to revolutionize business decision-making in ways that drive innovation and efficiency.Unfortunately, this revolution has yet to help the homeless. It is not due to a lack of data. Sacramento alone maintains data on half a million service interactions with more than 65,000 homeless individuals. California is considering integrating the data from its 44 continuums of care to create a richer pool of data. Additionally, researchers are uncovering troves of relevant information in educational and social service databases.These data, however, are only useful if they are aggressively mined for insights, looking for problems to solve and successful practices to replicate. At that juncture California falls short.

Read More

Soft Skills in Data Science

Article | April 29, 2021

We live in a world convulsed by new technologies and we are witnessing how more and more processes are automated in order to be executed with the same skill or even with better results than if they were carried out by a human, all this in order to be more efficient and effective. In this context the world of work is becoming increasingly competitive, because to remain employable we need to learn to manage or find a way to adapt our knowledge and skills to new technologies. With the spread of e-learning platforms and the tutorials that we can find available on the internet, acquiring new knowledge is within everyone's reach. For this reason, it is necessary to differentiate ourselves in order to stand out from other professionals, who have the hard skills similar to ours and this is precisely where Soft Skills play a very important role. What are Soft Skills? Soft skills are actually a combination of individual social skills, communication skills, personality traits, attitudes, social intelligence and emotional intelligence. Which facilitate relationships with others, making us more effective when interacting with other people. We could say that Soft Skills are the human interface that allow us to adapt to different working environments and industries. They are powerful tools for personal and professional growth. Why are Soft Skills key in our professional growth? Nowadays, standing out in the world of work is getting increasingly difficult, regardless of whether you are part of a corporation or work independently, due to the great competition within the labor market. That is why we must develop certain skills and attitudes that help us to function properly and successfully meet professional demands. Soft Skills are the point of differentiation that allows us to be selected for a position. The reason is very simple, we could be applying for a position and competing with people that are equal or even more qualified than us at a technical level, but to achieve the collaborative objectives of the company, more is required than just the technical and rational part. Also the way of communicating, values, ethics, as well as personality traits are highly valued factors since they help to drive organizations through high-performance teams, guaranteeing the achievement of their objectives. The background of the Soft Skills that we have trained throughout our lives make us unique, because it is unlikely that two people have the same combination of Soft Skills and been trained in a similar way, and that makes us more competitive against certain job opportunities where perhaps many will have the same Hard Skills, but where our Soft Skills will be the ones that will make us stand out to continue advancing in our professional career. How to sharpen our Soft Skills? To perform in any job we necessarily need to interact with other people, even if we work independently or remotely, so we must have the necessary skills that allow us to connect successfully with our teammates and stakeholders. Starting from the fact that Soft Skills are human skills, we can say that we have them pre-installed and the way to start using them (installing them) is through the experiences we undergo every day. Imagine being able to communicate assertively in your work environment and in your personal life. Master the use of tools installed in you to improve your interpersonal relationships within your work teams and reduce conflict. This would allow you to foster a healthy working environment and be able to lead any team in any environment in a strategic and effective way. Think of Soft Skills as a set of Apps that are ready to be used (like a toolbox) and that according to the experiences that are presented in our personal and / or professional lives, we are going to choose to use these applications to achieve our goals. Every time we access one of these applications, we are giving it the opportunity to collect data that will allow it to personalize its insights according to our needs and to fine-tune its effectiveness each time we use it. One of the best ways to train our Soft Skills is by leaving our comfort zone, because that will allow us to 'install' more and more Soft Skills. Another way to refine our Soft Skills is by participating in activities that involve people we do not know and even better if we involve people from other cultures, because we will achieve a beneficial exchange of experiences and knowledge for both parties that will enrich and make the training of our Soft Skills even more valuable. Some examples of activities that will enhance your Soft Skills: • Participate in competitions (e.g. Hackathons) • Found or be a lead of a community that shares your interests, and organizes small or large projects. • Organize a study group aimed at carrying out a technical or business project in order to confront professionals from various fields or industries. • Find resources and experts to help you. There are Soft Skills trainers who know useful techniques and tips to develop/sharpen your skills. • Participate in volunteer activities. You will meet new people with whom to put your Soft Skills in action. These activities will train/sharpen your leadership skills, teamwork, delegation, interpersonal communication, persuasion, etc. These are skills that we do not have as much facility to train while we are students or when we have just started working after finishing our studies, and that are required in the labor market to continue climbing in our professional career. Why do Soft Skills matter in the Data Science universe? A consequence of the use of Artificial Intelligence and Data Science is that many of the jobs that we know today will be automated and this is a matter of concern for many professionals who see their careers are in danger, but the good news is that in the future many new jobs the Soft Skills will be the main protagonists, this is what John Thompson explains us in his book "Building Analytics Teams" In other words, it is precisely our human skills that will allow us to be more employable in the future, and they will be highly requested skills because according to what the experts envision which is, that the machines will not be able to match us in this field, and that is why training our Soft Skills becomes a priority because they will allow us to be the key players of the future. On the other hand, Data Science is an interdisciplinary field where Soft Skills such as cooperation and communication are essential to achieve the goals set. Denis Rothman, author of the book "Transformers for Natural Language Processing" in an interview that I conducted, mentioned that The Human Quality is the most important thing for him when choosing the members of his work team. These are some considerations to take into account to generate a culture of cooperation: • People work harder and need less supervision, when they themselves control their work and have more freedom to choose how to do it. When they work as a team, they show greater motivation, their sense of pride increases and productivity reaches higher levels. • Solid teams that seek quality and excellence correct themselves; that is, they identify problems and correct them very quickly. Thus, they gain work experience and increase their performance. • Forming a solid and efficient work team requires patience. You need to give them time to see your results. They will have to establish procedures to complete tasks, handle administrative functions and work together efficiently, they will even have to adapt to their own decisions and accept their consequences. • A manager or team leader must recognize the team building process without expecting immediate results. The group will have to go through a learning process and this will take longer in some groups than in others. Another key component to achieving high levels of cooperation is fluid communication among team members and stakeholders. For instance defining the communication channels and the contact points in the different teams involved, guarantees the constant flow of communication during the life cycle of a Data Science project. One of the most critical moments is the presentation of the results to the stakeholders. In some cases the results of a project are not taken into consideration not so much because the expected results are not achieved, but because the way in which these results are presented are not meaningful for the stakeholders, and this, in most cases, it is due to the existence of communication barriers that is a consequence of the use of a language (terminologies) used in the technical world but not in the business world. After taking a tour of the world of Soft Skills, we can conclude by saying that Soft Skills are like superpowers that are waiting for the opportunity to be put into action, to make you a superhero or superheroine. Keep climbing positions in your professional career depends on you, on how much you use these superpowers but above all on your skills to refine them and make them available to the work team of which you are part. Don't wait any longer and start discovering your potential, start training your Soft Skills! If you want to know more about Soft Skills, I invite you to visit The Soft Skills Show

Read More

Rethinking and Recontextualizing Context(s) in Natural Language Processing

Article | June 10, 2021

We discursive creatures are construed within a meaningful, bounded communicative environment, namely context(s) and not in a vacuum. Context(s) co-occur in different scenarios, that is, in mundane talk as well as in academic discourse where the goal of natural language communication is mutual intelligibility, hence the negotiation of meaning. Discursive research focuses on the context-sensitive use of the linguistic code and its social practice in particular settings, such as medical talk, courtroom interactions, financial/economic and political discourse which may restrict its validity when ascribing to a theoretical framework and its propositions regarding its application. This is also reflected in the case of artificial intelligence approaches to context(s) such as the development of context-sensitive parsers, context-sensitive translation machines and context-sensitive information systems where the validity of an argument and its propositions is at stake. Context is at the heart of pragmatics or even better said context is the anchor of any pragmatic theory: sociopragmatics, discourse analysis and ethnomethodological conversation analysis. Academic disciplines, such as linguistics, philosophy, anthropology, psychology and literary theory have also studied various aspects of the context phenomena. Yet, the concept of context has remained fuzzy or is generally undefined. It seems that the denotation of the word [context] has become murkier as its uses have been extended in many directions. Context or/ and contexts? Now in order to be “felicitous” integrated into the pragmatic construct, the definition of context needs some delimitations. Depending on the frame of research, context is delimitated to the global surroundings of the phenomenon to be investigated, for instance if its surrounding is of extra-linguistic nature it is called the socio-cultural context, if it comprises features of a speech situation, it is called the linguistic context and if it refers to the cognitive material, that is a mental representation, it is called the cognitive context. Context is a transcendental notion which plays a key role in interpretation. Language is no longer considered as decontextualized sentences. Instead language is seen as embedded in larger activities, through which they become meaningful. In a dynamic outlook on communication, the acts of speaking (which generates a form discourse, for instance, conversational discourse, lecture or speech) and interpreting build contexts and at the same time constrain the building of such contexts. In Heritage’s terminology, “the production of talk is doubly contextual” (Heritage 1984: 242). An utterance relies upon the existing context for its production and interpretation, and it is, in its own right, an event that shapes a new context for the action that will follow. A linguistic context can be decontextualized at a local level, and it can be recontextualized at a global level. There is intra-discursive recontextualization anchored to local decontextualization, and there is interdiscursive recontextualization anchored to global recontextualization. “A given context not only 'legislates' the interpretation of indexical elements; indexical elements can also mold the background of the context” (Ochs, 1990). In the case of recontextualization, in a particular scenario, it is valid to ask what do you mean or how do you mean. Making a reference to context and a reference to meaning helps to clarify when there is a controversy about the communicative status and at the same time provides a frame for the recontextualization. A linguistic context is intrinsically linked to a social context and a subcategory of the latter, the socio-cultural context. The social context can be considered as unmarked, hence a default context, whereas a socio-cultural context can be conceived as a marked type of context in which specific variables are interpreted in a particular mode. Culture provides us, the participants, with a filter mechanism which allows us to interpret a social context in accordance with particular socio-cultural context constraints and requirements. Besides, socially constitutive qualities of context are unavoidable since each interaction updates the existing context and prepares new ground for subsequent interaction. Now, how these aforementioned conceptualizations and views are reflected in NLP? Most of the research work has focused in the linguistic context, that is, in the word level surroundings and the lexical meaning. An approach to producing sense embeddings for the lexical meanings within a lexical knowledge base which lie in a space that is comparable to that of contextualized word vectors. Contextualized word embeddings have been used effectively across several tasks in Natural Language Processing, as they have proved to carry useful semantic information. The task of associating a word in context with the most suitable meaning from a predefined sense inventory is better known as Word Sense Disambiguation (Navigli, 2009). Linguistically speaking, “context encompasses the total linguistic and non-linguistic background of a text” (Crystal, 1991). Notice that the nature of context(s) is clearly crucial when reconstructing the meaning of a text. Therefore, “meaning-in-context should be regarded as a probabilistic weighting, of the list of potential meanings available to the user of the language.” The so-called disambiguating role of context should be taken with a pinch of salt. The main reason for language models such as BERT (Devlin et al., 2019), RoBERTA (Liu et al., 2019) and SBERT (Reimers, 2019) proved to be beneficial in most NLP task is that contextualized embeddings of words encode the semantics defined by their input context. In the same vein, a novel method for contextualized sense representations has recently been employed: SensEmBERT (Scarlini et al., 2020) which computes sense representations that can be applied directly to disambiguation. Still, there is a long way to go regarding context(s) research. The linguistic context is just one of the necessary conditions for sentence embeddedness in “a” context. For interpretation to take place, well-formed sentences and well-formed constructions, that is, linguistic strings which must be grammatical but may be constrained by cognitive sentence-processability and pragmatic relevance, particular linguistic-context and social-context configurations, which make their production and interpretation meaningful, will be needed.

Read More

THE NOT-SO-DISTANT FUTURE OF WORK

Article | November 20, 2020

As smart machines, data, and algorithms usher in dramatic technological transformation, its global impact spans from cautious optimism to doomsday scenarios. Widespread transformation, displacement, and disaggregation of world labor markets is speculated in countries like India, with an estimated 600 million workforce by 2022, as well as the global labor market. Even today, we are witnessing the resurgence of 'hybrid' jobs where distinctive human abilities are paired with data and algorithms, and 'super' jobs that involve deep tech. Our historical response to such tectonic shifts and upheavals has been predictable so far - responding with trepidation and uncertainty in the beginning followed by a period of painful transition. Communities and nations that can sense and respond will be able to shape social, economic, and political order decisively. However, with general AI predictably coming of age by 2050-60, governments will need to frame effective policies to respond to their obligations to their citizens. This involves the creation of a new social contract between the individual, enterprise, and state for an inclusive and equitable society. The present age is marked by automation, augmentation, and amplification of human talent by transformative technologies. A typical career may go through 15-20 transitions. And given the gig economy, the shelf-life of skills is rapidly shrinking. Many agree that for the next 30 years, the nature and the volume of jobs will get significantly redefined. So even as it is nearly impossible to gaze into the crystal ball 100 years later, one can take a shot at what jobs may emerge in the next 20-30 years given the present state. So here is a glimpse into the kind of technological changes the next generation might witness that will change the employment scenario: RESTORATION OF BIODIVERSITY Our biodiversity is shrinking frighteningly fast - for both flora and fauna. Extinct species revivalists may be challenged with restoring and reintegrating pertinent elements back into the natural environment. Without biodiversity, humanity will perish. PERSONALIZED HEALTHCARE Medicine is rapidly getting personalized as genome sequencing becomes commonplace. Even today, Elon Musk's Neuralink is working on brain-machine interfaces. So you may soon be able to upload your brain onto a computer where it can be edited, transformed, and re-uploaded back into you. Anti-aging practitioners will be tasked with enhancing human life-spans to ensure we stay productive late into our twilight years. Gene sequencers will help personalize treatments and epigenetic therapists will manipulate gene expression to overcome disease and decay. Brain neurostimulation experts and augmentationists may be commonplace to ensure we are happier, healthier, and disease-free. In fact, happiness itself may get redefined as it shifts from the quality of our relationships to that between man-machine integration. THE QUANTIFIED SELF As more of the populace interact and engage with a digitized world, digital rehabilitators will help you detox and regain your sense of self, which may get inseparably intertwined with smart machines and interfaces. DATA-LED VALUE CREATION Data is exploding at a torrid pace and becoming a source of value-creation. While today's organizations are scrambling to create data lakes, future data-centers will be entrusted with sourcing high-value data, securing rights to it, and even licensing it to others. Data will increasingly create competitive asymmetries amongst organizations and nations. Data brokers will be the new intermediaries and data detectives, analysts, monitors or watchers, auditors, and frackers will emerge as new-age roles. Since data and privacy issues are entwined together, data regulators, ethicists, and trust professionals will thrive. Many new cyber laws will come into existence. HEALING THE PLANET As the world grapples with the specter of climate change, our focus on sustainability and clean energy will intensify. Our landfills are choked with both toxic and non-toxic waste. Plastic alone takes almost 1000 years to degrade, so landfill operators will use earthworm-like robots to help decompose waste and recoup precious recyclable waste. Nuclear fusion will emerge as the new source of clean energy, creating a broad gamut of engineers, designers, integrators, architects, and planners around it. We may even generate power in space. Since our oceans are infested with waste, a lot of initiatives and roles will emerge around cleaning the marine environment to ensure natural habitat and food security. TAMING THE GENOME As technologies like CRISPR and Prime-editing mature, we may see a resurgence of biohackers and programmable healthcare. Our health and nutrition may be algorithmically managed. CRISPR-like advancements will need a swathe of engineers, technicians, auditors, and regulators for genetically engineered health that may overcome a wide variety of diseases for longer life-expectancy. THE RISE OF BOTS Humanoid and non-humanoid robots will need entire workforce ecosystems around them spanning from suppliers, programmers, operators, and maintenance experts to ethicists and UI-designers. Smart robot psychologists will have to counsel them and ensure they are safe and friendly. Regulators may grant varying levels of autonomy to robots. DATA LOADS THE GUN, CREATIVITY FIRES THE TRIGGER Today's deep-learning Generative Adversarial Networks (GANs) can create music like Mozart and paintings like Picasso. Such advancements will give birth to a wide array of AI-enhanced professionals, like musicians, painters, authors, quantum programmers, cybersecurity experts, educators, etc. FROM AUGMENTATION TO AUTONOMY Autonomous driving is about to mature in the next few years and will extend to air and space travel. Safety will exceed human capabilities and we may soon reach a state of diminishing returns where we will employ fewer humans to prevent mishaps and unforeseen occurrences. This industry will need supportive command center managers, traffic analyzers, fleet managers, and people to ensure onboarding experience. BLOCKCHAIN BECOMES PERVASIVE Blockchain will create a lot of jobs for its mainstream and derivative applications. Even though most of its present applications are in Financial Services, Supply Chain, and Asset Management industries, very soon its adoption and integration will be a lot more expansive. Engineers, designers, UI/UX experts, analysts, auditors, and regulators will be required to manage blockchain-related applications. With Crypto being one of its better-known applications, a lot of transaction specialists, miners, insurers, wealth managers, and regulators will be needed. Crypto exchanges will come under the purview of the regulatory framework. 3D PRINTING TURNS GAME-CHANGER Additive manufacturing, also popularly called 3D printing, will mature in its precision, capabilities, and market potential. Lab-grown, 3D-printed food will be part of our regular diet. Transplantable organs will be generated using stem cell research and 3D printing. Amputees and the disabled will adopt 3D-printed limbs and prosthetics. Its applications for high-precision reconstructive surgery are already commonplace. Pills are being 3D printed as we speak. So again, we are looking at 3D printers, operators, material scientists, pharmacists, construction experts, etc. THE COLONIZATION OF OUTER SPACE Amazon's Blue Origin and Elon Musk's SpaceX signal a new horizon. As space tech gets into a new trajectory, a new breed of commercial space pilots, mission planners, launch managers, cargo experts, ground crew, experience designers, etc. will be required. Since we have ravaged the limited resources of our planet already, mankind will need to venture into asteroid mining for rare and precious metals. This will need scouts and surveyors, meteorologists, remote bot operators, remotely managed factories, and whatnot. THE HYPER-CONNECTED WORLD By 2020, we already have anywhere between 50-75 billion connected devices. By 2040, this will likely swell to more than 100 trillion sensors that will spew out a dizzying volume of real-time data ready for analytics and AI. A complete IoT system as we know it is aware, autonomous, and actionable, just like a self-driving car. Imagine the number of data modelers, sensor designers and installers, signal architects and engineers that will be needed. Home automation will be pervasive and smart medicines, implants, and wearables will be the norms of the day. DRONES USHER IN DISRUPTION Unmanned aerial and underwater drones are already becoming ubiquitous for applications in aerial surveillance, delivery, and security. Countries are awakening to their potential as well as possibilities of misuse. Command centers, just like that for space travel, will manage them as countries rush to put in a regulatory framework around them. An army of designers, programmers, security experts, traffic flow optimizers will harness their true potential. SHIELDING YOUR DATA With data come cyber threats, data breaches, cyber warfare, cyber espionage, and a host of other issues. The more data-dependent and connected the world is, the bigger the problem of cybersecurity will be. The severity of the problem will increase manifold from the current issues like phishing, spyware, malware, viruses and worms, ransomware, DoS/ DDoS attacks, hacktivism, and cybersecurity will indeed be big business. The problem is that threats are increasing 10X faster than investments in this space and the interesting thing is that it is a lot more about audits, governance, policies, and compliance than technology alone. FOOD-TECH COMES OF AGE As the world population grows to 9.7 billion people in 2050, cultured food and lab-grown meat will hit our tables to ensure food security. Entire food chains and value delivery networks will see an unprecedented change. Agriculture will be transformed with robotics, IoT, drones, and the food-tech sector will take off in a big way. QUANTUM COMPUTING SOLVES INTRACTABLE PROBLEMS Finally, while the list is very long, let’s touch upon the advent of qubits, or Quantum computing. With its ability to break the best encryption on the planet, the traditional asymmetric encryption, public key infrastructure, digital envelopes, and digital certificates in use today will be rendered useless. Bring in the quantum programmers, analysts, privacy and trust managers, health monitors, etc. As we brace for the world that looms large ahead of us, the biggest enabler that will be transformed itself will be Education 4.0. Education will cease to be a phase in your life. Life-long interventions will be needed to adapt, impart, and shape the skills of individuals that are ready for the future of work. More power to the people!

Read More

Spotlight

SnapLogic

SnapLogic is the only elastic integration platform as a service (iPaaS) that delivers real-time, event-driven application integration and batch big data integration for analytics in a single cloud integration and data integration platform. Organizations of all sizes rely on our fast, multi-point and modern iPaaS to rapidly deliver Amazon Redshift integration, Salesforce integration, ServiceNow integration, integration for the Workday® solution and more. Pre-built intelligent connectors called Snaps enable cloud to cloud and cloud (including social data sources like Facebook, Twitter and LinkedIn) to on-premises integration with ERP applications like SAP and Oracle EBS, Hadoop and relational databases and files. By rapidly integrating all of your data, applications and APIs, the SnapLogic Elastic Integration Platform ensures that you’re getting maximum adoption out of all your SaaS applications, cloud and legacy platforms and big data investments. With SnapLogic, cloud application and b

Events