Hadoop Virtualization by Courtney

| August 24, 2017

article image
Hadoop is a popular framework used for nimble, cost-effective anal‐ ysis of unstructured data. The global Hadoop market, valued at $1.5 billion in 2012, is estimated to reach $50 billion by 2020.1 Companies can now choose to deploy a Hadoop cluster in a physical server envi‐ ronment, a private cloud environment, or in the public cloud.

Spotlight

Ysance

Two professions, one goal. With both of its professions, Ysance pursues a common goal: to reveal the value of your customer data and to put them into action. Data Services supports companies in their data-driven transformation, covering the entire data value chain: Data Integration (Talend ETL, ESB, Data Quality). Big Data (Cloudera, Hadoop, Hortonworks, MapR).

OTHER ARTICLES

Why Data Science Needs DataOps

Article | March 31, 2020

DataOps helps reduce the time data scientists spend preparing data for use in applications. Such tasks consume roughly 80% of their time now.We’re still hopeful that the digital transformation will provide the insights businesses need from big data. As a data scientist, you’re probably aware of the growing pressure from companies to extract meaningful insights from data and find the stories needed for impact.No matter how in-demand data science is in the employment numbers, equal pressure is rising for data scientists to deliver business value and no wonder. We’re approaching the age where data science and AI draw a line in the sand for which companies remain competitive and which ones collapse.One answer to this pressure is the rise of DataOps. Let’s take a look at what it is and how it could provide a path for data scientists to give businesses what they’ve been after.

Read More

Soft Skills in Data Science

Article | April 29, 2021

We live in a world convulsed by new technologies and we are witnessing how more and more processes are automated in order to be executed with the same skill or even with better results than if they were carried out by a human, all this in order to be more efficient and effective. In this context the world of work is becoming increasingly competitive, because to remain employable we need to learn to manage or find a way to adapt our knowledge and skills to new technologies. With the spread of e-learning platforms and the tutorials that we can find available on the internet, acquiring new knowledge is within everyone's reach. For this reason, it is necessary to differentiate ourselves in order to stand out from other professionals, who have the hard skills similar to ours and this is precisely where Soft Skills play a very important role. What are Soft Skills? Soft skills are actually a combination of individual social skills, communication skills, personality traits, attitudes, social intelligence and emotional intelligence. Which facilitate relationships with others, making us more effective when interacting with other people. We could say that Soft Skills are the human interface that allow us to adapt to different working environments and industries. They are powerful tools for personal and professional growth. Why are Soft Skills key in our professional growth? Nowadays, standing out in the world of work is getting increasingly difficult, regardless of whether you are part of a corporation or work independently, due to the great competition within the labor market. That is why we must develop certain skills and attitudes that help us to function properly and successfully meet professional demands. Soft Skills are the point of differentiation that allows us to be selected for a position. The reason is very simple, we could be applying for a position and competing with people that are equal or even more qualified than us at a technical level, but to achieve the collaborative objectives of the company, more is required than just the technical and rational part. Also the way of communicating, values, ethics, as well as personality traits are highly valued factors since they help to drive organizations through high-performance teams, guaranteeing the achievement of their objectives. The background of the Soft Skills that we have trained throughout our lives make us unique, because it is unlikely that two people have the same combination of Soft Skills and been trained in a similar way, and that makes us more competitive against certain job opportunities where perhaps many will have the same Hard Skills, but where our Soft Skills will be the ones that will make us stand out to continue advancing in our professional career. How to sharpen our Soft Skills? To perform in any job we necessarily need to interact with other people, even if we work independently or remotely, so we must have the necessary skills that allow us to connect successfully with our teammates and stakeholders. Starting from the fact that Soft Skills are human skills, we can say that we have them pre-installed and the way to start using them (installing them) is through the experiences we undergo every day. Imagine being able to communicate assertively in your work environment and in your personal life. Master the use of tools installed in you to improve your interpersonal relationships within your work teams and reduce conflict. This would allow you to foster a healthy working environment and be able to lead any team in any environment in a strategic and effective way. Think of Soft Skills as a set of Apps that are ready to be used (like a toolbox) and that according to the experiences that are presented in our personal and / or professional lives, we are going to choose to use these applications to achieve our goals. Every time we access one of these applications, we are giving it the opportunity to collect data that will allow it to personalize its insights according to our needs and to fine-tune its effectiveness each time we use it. One of the best ways to train our Soft Skills is by leaving our comfort zone, because that will allow us to 'install' more and more Soft Skills. Another way to refine our Soft Skills is by participating in activities that involve people we do not know and even better if we involve people from other cultures, because we will achieve a beneficial exchange of experiences and knowledge for both parties that will enrich and make the training of our Soft Skills even more valuable. Some examples of activities that will enhance your Soft Skills: • Participate in competitions (e.g. Hackathons) • Found or be a lead of a community that shares your interests, and organizes small or large projects. • Organize a study group aimed at carrying out a technical or business project in order to confront professionals from various fields or industries. • Find resources and experts to help you. There are Soft Skills trainers who know useful techniques and tips to develop/sharpen your skills. • Participate in volunteer activities. You will meet new people with whom to put your Soft Skills in action. These activities will train/sharpen your leadership skills, teamwork, delegation, interpersonal communication, persuasion, etc. These are skills that we do not have as much facility to train while we are students or when we have just started working after finishing our studies, and that are required in the labor market to continue climbing in our professional career. Why do Soft Skills matter in the Data Science universe? A consequence of the use of Artificial Intelligence and Data Science is that many of the jobs that we know today will be automated and this is a matter of concern for many professionals who see their careers are in danger, but the good news is that in the future many new jobs the Soft Skills will be the main protagonists, this is what John Thompson explains us in his book "Building Analytics Teams" In other words, it is precisely our human skills that will allow us to be more employable in the future, and they will be highly requested skills because according to what the experts envision which is, that the machines will not be able to match us in this field, and that is why training our Soft Skills becomes a priority because they will allow us to be the key players of the future. On the other hand, Data Science is an interdisciplinary field where Soft Skills such as cooperation and communication are essential to achieve the goals set. Denis Rothman, author of the book "Transformers for Natural Language Processing" in an interview that I conducted, mentioned that The Human Quality is the most important thing for him when choosing the members of his work team. These are some considerations to take into account to generate a culture of cooperation: • People work harder and need less supervision, when they themselves control their work and have more freedom to choose how to do it. When they work as a team, they show greater motivation, their sense of pride increases and productivity reaches higher levels. • Solid teams that seek quality and excellence correct themselves; that is, they identify problems and correct them very quickly. Thus, they gain work experience and increase their performance. • Forming a solid and efficient work team requires patience. You need to give them time to see your results. They will have to establish procedures to complete tasks, handle administrative functions and work together efficiently, they will even have to adapt to their own decisions and accept their consequences. • A manager or team leader must recognize the team building process without expecting immediate results. The group will have to go through a learning process and this will take longer in some groups than in others. Another key component to achieving high levels of cooperation is fluid communication among team members and stakeholders. For instance defining the communication channels and the contact points in the different teams involved, guarantees the constant flow of communication during the life cycle of a Data Science project. One of the most critical moments is the presentation of the results to the stakeholders. In some cases the results of a project are not taken into consideration not so much because the expected results are not achieved, but because the way in which these results are presented are not meaningful for the stakeholders, and this, in most cases, it is due to the existence of communication barriers that is a consequence of the use of a language (terminologies) used in the technical world but not in the business world. After taking a tour of the world of Soft Skills, we can conclude by saying that Soft Skills are like superpowers that are waiting for the opportunity to be put into action, to make you a superhero or superheroine. Keep climbing positions in your professional career depends on you, on how much you use these superpowers but above all on your skills to refine them and make them available to the work team of which you are part. Don't wait any longer and start discovering your potential, start training your Soft Skills! If you want to know more about Soft Skills, I invite you to visit The Soft Skills Show

Read More

5 Predictive Data Analytics Applications

Article | May 31, 2021

According to Google trends, predictive data analytics has gained a significant amount of popularity over the last few years. Many businesses have implemented predictive analytics applications to increase their business reach, gain new customers, forecast sales, and more. Predictive Analytics is a type of data analytics technology that makes predictions with the help of data sets, statistical modeling, and machine learning. Predictive analytics uses historical data. This historical data is fed into a mathematical model that recognizes patterns and trends that are then applied to current data to forecast trends, practices, and behaviors from milliseconds to days and even years. Based on the parameters supplied to them, organizations find patterns within that data to detect risks, opportunities, forecast conditions, and events that would occur at a particular time. At its heart, the use of predictive analytics answers a simple question, “What would happen based on my current data and what can be done to change the outcome.” In the current times, businesses have multiple products offerings at their disposal to choose from vendors of big data predictive analytics in different industries. They can help these businesses leverage historical data discovering complex data correlation, recognizing patterns, and forecasting. Organizations are turning to predictive analytics to increase their bottom line and gain advantages against their competition. Some of those reasons are listed below: • With the growing amount and types of data, there is more interest in utilizing it to produce valuable insights • Better computers • An abundance of easy to use software • Need of competitive differentiation due to tougher economic conditions As more and more easy-to-use software have been introduced, businesses no longer need statisticians and mathematicians for predictive analytics and forecasting. Benefits of Predictive Analytics Competitive edge over other businesses The most common reason why multiple companies picked up predictive analytics was to gain an advantage over their competitors. Customer trends and buying patterns keep changing from time to time. The ones who can identify it first will go ahead in the game. Embracing predictive analytics is how you will stay ahead of your competition. Predictive analytics will aid in qualified lead generation and give you an insight into the present and potential customers. Business growth Businesses opt for predictive analytics to predict customer behavior, preferences, and responses. Using this information, they attract their target audience and entice them into becoming loyal customers. Predictive analytics gives valuable information about your customers such as which of them are likely to lapse, how to retain them, whether you should market directly at them, etc. The more you know about them, the stronger your marketing will become. Your business will become the leader in predicting your customer’s exact needs. Customer satisfaction Retaining existing customers is almost five times more difficult than acquiring new ones. The most successful company is the one that invests money in retaining those customers as much as acquiring new ones. Predictive analytics helps in directing marketing strategies towards your existing customers and get them to return frequently. The analytics tool will make sure your marketing strategy caters to the diverse requirements of your customers. Personalized services Earlier marketing strategies revolved around the ‘one size fits all’ approach, but gone are those days. If you want to retain and acquire new customers, you have to create personalized marketing campaigns to attract customers. Predictive analytics and data management help you to get new information about customer expectations, previous purchases, buying behaviors, and patterns. Using this data, you can create these personalized marketing strategies that will help keep up the engagement and acquire new customers.   Application of Predictive Analytics Customer targeting Customer targeting divides the customer base into different demographic groups according to age, gender, interests, buying, and spending habits. It helps companies to create tailored marketing communications specifically to the customers who are likely to buy their products. Traditional techniques do not even come close to identifying potential customers as well as predictive analytics does. The major constituents that create these customer groups are: • Socio-demographic factors: age, gender, education, and marital status • Engagement factors: recent interaction, frequency, spending habits, etc. • Past campaign response: contact response, type, day, month, etc. The customer-specific targeting for the company is highly advantageous. They can: • Better communicate with the customers • Save money on marketing • Increase profits Customer churn prevention Customer churn prevention creates major hurdles in a company’s growth. Although it has been proven that retaining customers is cheaper than gaining new ones, it can become a problem. Detecting a client’s dissatisfaction is not an easy task as they can abruptly stop using your services without any warning. Here, churn prevention comes into the picture. Churn prevention aims to predict who will end their relationship with the company, when, and why. The existing data sets can help develop predictive models so companies can be proactive to prevent the fallout. Factors that can influence the churn are as follows: • Customer variables • Service use • Engagement • Technicalities • Competitor variables Using these variables, companies can then take necessary steps to avoid the churn by offering customers personalized services or products. Risk management Risk assessment and management processes in many companies are antiquated. Even though customer information is abundantly available for evaluation, it is still antiquated. With advanced analytics, this data can be quickly and accurately analyzed while maintaining customer privacy and boundaries. Risk assessment thus allows companies to analyze problems with any business. Predictive analytics can approximate with certainty which operations are profitable and which are not. Risk assessment analyzes the following data types: • Socio-demographic factors • Product details • Customer behavior • Risk metrics Forecast sales Evaluating the previous history, seasonality, and market-affecting events make revenue predicting vital for a company’s planning and result in a company’s demand for a product or a service. This can be applied to short-term, medium-term, and long-term forecasting. Predictive models help in anticipating a customer’s reaction to the factors that affect sales. Following factors can be used in sales forecasting: • Calendar data • Weather data • Company data • Social data • Demand data Sales forecasting allows revenue prediction and optimal resource allocation. Healthcare Healthcare organizations have begun to use predictive analytics as this technology is helping them save money. They are using predictive analytics in several different ways. With the help of this technology, based on past trends they can now allocate facility resources, optimize staff schedules, identify patients at risk, adding intelligence to pharmaceutical and supply acquisition management. Using predictive analytics in the health domain has also helped in preventing cases and risks of developing health complications like diabetes, asthma, and other life-threatening problems. The application of predictive analytics in health care can lead to making better clinical decisions for patients. Predictive analytics is being used across different industries and is good way to advance your company’s growth and forecast future events to act accordingly. It has gained support from many different organizations at a global scale and will continue to grow rapidly. Frequently Asked Questions What is predictive analytics? Predictive analytics uses historical data to predict future events. The historical data is used to build mathematical model that captures essential trends. That predictive model is based on current data that predicts what will happen next or suggest steps to take for optimal outcomes. How to do predictive analytics? • Define business objectives • Collect relevant data available from resources • Improve on collected data by data cleaning methods • Choose a model or build your own to test data • Evaluate and validate the predictive model to ensure How does predictive analytics work for business? Predictive analytics helps businesses attract, retain, and grow their profitable customers. It also helps them in improving their operations. What tools are used for predictive analytics? Some tools used for predictive analytics are: • SAS Advanced Analytics • Oracle DataScience • IBM SPSS Statistics • SAP Predictive Analytics • Q Research { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is predictive analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Predictive analytics uses historical data to predict future events. The historical data is used to build a mathematical model that captures essential trends. That predictive model is based on current data that predicts what will happen next or suggest steps to take for optimal outcomes." } },{ "@type": "Question", "name": "How to do predictive analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Define business objectives Collect relevant data available from resources Improve on collected data by data cleaning methods Choose a model or build your own to test data Evaluate and validate the predictive model to ensure " } },{ "@type": "Question", "name": "How does predictive analytics work for business?", "acceptedAnswer": { "@type": "Answer", "text": "Predictive analytics helps businesses attract, retain, and grow their profitable customers. It also helps them in improving their operations." } },{ "@type": "Question", "name": "What tools are used for predictive analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Some tools used for predictive analytics are: SAS Advanced Analytics Oracle DataScience IBM SPSS Statistics SAP Predictive Analytics Q Research" } }] }

Read More

COMBINATION OF VIRTUAL REALITY AND DATA ANALYTICS

Article | March 30, 2020

Virtual reality is an innovation with boundless opportunities. These can be seen when it is combined with another tech to make new opportunities. At the point when paired with gaming, for instance, VR has empowered the user to enter the virtual universe of the game, for example, in an online casino where the user can enter a virtual casino from the comfort of their own home. When utilized in marketing, property developers can demonstrate houses to potential buyers any place they were on the planet.

Read More

Spotlight

Ysance

Two professions, one goal. With both of its professions, Ysance pursues a common goal: to reveal the value of your customer data and to put them into action. Data Services supports companies in their data-driven transformation, covering the entire data value chain: Data Integration (Talend ETL, ESB, Data Quality). Big Data (Cloudera, Hadoop, Hortonworks, MapR).

Events