How about trying complex Data Analytics Solutions for size and fit, before you splash the cash?

| September 13, 2016

article image
The pressure to deliver Alpha – potential above the market average – is immense. And that’s not surprising because in a quick-change disruptive world, Alpha consistency puts an organisation at the sharp edge of its digitally-driven market. If it can be done quickly, that is.One of the biggest stumbling blocks to creating breakthrough insights that drive value though, has been the time it takes to realise or monetise the business potential in data. But what if I said that instead of waiting months or even years for project results you could deliver Alpha, fully, within 6-10 weeks?

Spotlight

TRASYS INTERNATIONAL

As a specialised ICT company focusing on International Public and Corporate Organisations, Trasys International offers IT solutions, services and consulting to help in achieving compliance with international policies and regulations and tackling challenges presented by the imperatives of digital transformation. Trasys International capitalises on the expertise and track record built up over 25 years of working with the European Institutions and their agencies. We have acquired specific skills in setting up and managing partnerships and consortia for delivering specialised services.

OTHER ARTICLES

Data Analytics the Force Behind the IoT Evolution

Article | April 3, 2020

Primarily,the IoT stack is going beyond merely ingesting data to data analytics and management, with a focus on real-time analysis and autonomous AI capacities. Enterprises are finding more advanced ways to apply IoT for better and more profitable outcomes. IoT platforms have evolved to use standard open-source protocols and components. Now enterprises are primarily focusing on resolving business problems such as predictive maintenance or usage of smart devices to streamline business operations.Platforms focus on similar things, but early attempts at the creation of highly discrete solutions around specific use cases in place of broad platforms, have been successful. That means more vendors offer more choices for customers, to broaden the chances for success. Clearly, IoT platforms actually sit at the heart of value creation in the IoT.

Read More

Rethinking and Recontextualizing Context(s) in Natural Language Processing

Article | June 10, 2021

We discursive creatures are construed within a meaningful, bounded communicative environment, namely context(s) and not in a vacuum. Context(s) co-occur in different scenarios, that is, in mundane talk as well as in academic discourse where the goal of natural language communication is mutual intelligibility, hence the negotiation of meaning. Discursive research focuses on the context-sensitive use of the linguistic code and its social practice in particular settings, such as medical talk, courtroom interactions, financial/economic and political discourse which may restrict its validity when ascribing to a theoretical framework and its propositions regarding its application. This is also reflected in the case of artificial intelligence approaches to context(s) such as the development of context-sensitive parsers, context-sensitive translation machines and context-sensitive information systems where the validity of an argument and its propositions is at stake. Context is at the heart of pragmatics or even better said context is the anchor of any pragmatic theory: sociopragmatics, discourse analysis and ethnomethodological conversation analysis. Academic disciplines, such as linguistics, philosophy, anthropology, psychology and literary theory have also studied various aspects of the context phenomena. Yet, the concept of context has remained fuzzy or is generally undefined. It seems that the denotation of the word [context] has become murkier as its uses have been extended in many directions. Context or/ and contexts? Now in order to be “felicitous” integrated into the pragmatic construct, the definition of context needs some delimitations. Depending on the frame of research, context is delimitated to the global surroundings of the phenomenon to be investigated, for instance if its surrounding is of extra-linguistic nature it is called the socio-cultural context, if it comprises features of a speech situation, it is called the linguistic context and if it refers to the cognitive material, that is a mental representation, it is called the cognitive context. Context is a transcendental notion which plays a key role in interpretation. Language is no longer considered as decontextualized sentences. Instead language is seen as embedded in larger activities, through which they become meaningful. In a dynamic outlook on communication, the acts of speaking (which generates a form discourse, for instance, conversational discourse, lecture or speech) and interpreting build contexts and at the same time constrain the building of such contexts. In Heritage’s terminology, “the production of talk is doubly contextual” (Heritage 1984: 242). An utterance relies upon the existing context for its production and interpretation, and it is, in its own right, an event that shapes a new context for the action that will follow. A linguistic context can be decontextualized at a local level, and it can be recontextualized at a global level. There is intra-discursive recontextualization anchored to local decontextualization, and there is interdiscursive recontextualization anchored to global recontextualization. “A given context not only 'legislates' the interpretation of indexical elements; indexical elements can also mold the background of the context” (Ochs, 1990). In the case of recontextualization, in a particular scenario, it is valid to ask what do you mean or how do you mean. Making a reference to context and a reference to meaning helps to clarify when there is a controversy about the communicative status and at the same time provides a frame for the recontextualization. A linguistic context is intrinsically linked to a social context and a subcategory of the latter, the socio-cultural context. The social context can be considered as unmarked, hence a default context, whereas a socio-cultural context can be conceived as a marked type of context in which specific variables are interpreted in a particular mode. Culture provides us, the participants, with a filter mechanism which allows us to interpret a social context in accordance with particular socio-cultural context constraints and requirements. Besides, socially constitutive qualities of context are unavoidable since each interaction updates the existing context and prepares new ground for subsequent interaction. Now, how these aforementioned conceptualizations and views are reflected in NLP? Most of the research work has focused in the linguistic context, that is, in the word level surroundings and the lexical meaning. An approach to producing sense embeddings for the lexical meanings within a lexical knowledge base which lie in a space that is comparable to that of contextualized word vectors. Contextualized word embeddings have been used effectively across several tasks in Natural Language Processing, as they have proved to carry useful semantic information. The task of associating a word in context with the most suitable meaning from a predefined sense inventory is better known as Word Sense Disambiguation (Navigli, 2009). Linguistically speaking, “context encompasses the total linguistic and non-linguistic background of a text” (Crystal, 1991). Notice that the nature of context(s) is clearly crucial when reconstructing the meaning of a text. Therefore, “meaning-in-context should be regarded as a probabilistic weighting, of the list of potential meanings available to the user of the language.” The so-called disambiguating role of context should be taken with a pinch of salt. The main reason for language models such as BERT (Devlin et al., 2019), RoBERTA (Liu et al., 2019) and SBERT (Reimers, 2019) proved to be beneficial in most NLP task is that contextualized embeddings of words encode the semantics defined by their input context. In the same vein, a novel method for contextualized sense representations has recently been employed: SensEmBERT (Scarlini et al., 2020) which computes sense representations that can be applied directly to disambiguation. Still, there is a long way to go regarding context(s) research. The linguistic context is just one of the necessary conditions for sentence embeddedness in “a” context. For interpretation to take place, well-formed sentences and well-formed constructions, that is, linguistic strings which must be grammatical but may be constrained by cognitive sentence-processability and pragmatic relevance, particular linguistic-context and social-context configurations, which make their production and interpretation meaningful, will be needed.

Read More

Value Vs Cost: 3 Core Components to Evaluate a Data and Analytics Solution

Article | July 13, 2021

All business functions whether it is finance, marketing, procurement, or others find using data and analytics to drive success an imperative for today. They want to make informed decisions and be able to predict trends that are based on trusted data and insights from the business, operations, and customers. The criticality of delivering these capabilities was emphasised in a recent report, “The Importance of Unified Data and Analytics, Why and How Preintegrated Data and Analytics Solutions Drive Busines Success,” from Forrester Consulting. For approximately two-thirds of the global data warehouse and analytics strategy decision-makers surveyed in the research, their key data and analytics priorities are:

Read More

Machine Learning vs. Deep Learning. Which Does Your Business Need?

Article | February 17, 2020

In recent years, artificial intelligence research and applications have accelerated at a rapid speed. Simply saying your organization will incorporate AI isn’t as specific as it once was. There are diverse implementation options for AI, Machine Learning, and Deep Learning, and within each of them, a series of different algorithms you can leverage to improve operations and establish a competitive edge. Algorithms are utilized across almost every industry. For example, to power the recommendation engines in all media platforms, the chatbots that support customer service efforts at scale, and the self-driving vehicles being tested by the world’s largest automotive and technology companies. Because of how diverse AI has become and the many ways in which it works with data, companies must carefully evaluate what will work best for them.

Read More

Spotlight

TRASYS INTERNATIONAL

As a specialised ICT company focusing on International Public and Corporate Organisations, Trasys International offers IT solutions, services and consulting to help in achieving compliance with international policies and regulations and tackling challenges presented by the imperatives of digital transformation. Trasys International capitalises on the expertise and track record built up over 25 years of working with the European Institutions and their agencies. We have acquired specific skills in setting up and managing partnerships and consortia for delivering specialised services.

Events