How big data is affecting security

| December 4, 2019

article image
Since the late 20th century our world has faced a technological revolution mostly based on the transmission, use and classification of data. This movement was led in part by the establishment of the computer and later the intranet. With the birth of machine learning and transmission of data via an unsecured infrastructure, we gave rise to a playground for corruption, theft, fraud and every other acronym espoused by the bad actor.This understanding between good and bad has been playing out for the better part of 20 years with the affect leading to more bandages and greater infrastructure to defend the walls protecting businesses and governments. Knowing that it is impossible to truly prevent anything, it’s time to discuss how the accessibility, transmission and compiling of data and meta data is leading to a new fertile ground for the bad actor and nation states to attack all of us.Big data are large data sets that may be analyzed computationally to reveal patterns, trends and associations, especially relating to human behavior and interactions. Meta data is a set of data that describes and gives information about other data. The goal, simply put, is to use big data to define trends and compile meta data to validate trends defining consistent repeatable actions. By using machine learning and deep learning to process this data using a neural network a computer system modeled on the human brain and nervous system that categorizes and prioritizes big data and meta data the birth of AI (synthetic cognition) can arise.

Spotlight

Juice Analytics

We are the company behind Juicebox, a new kind of tool for visualizing data and building data products with the everyday decision maker in mind. Organizations are so caught up in the race to capture and analyze data that they’re rushing past the most critical component – the end user. The best data in the world is useless if the everyday decision maker can’t understand it and interact with it.

OTHER ARTICLES

Put Publicly Available COVID-19 Data to Work for Your Business—Fast

Article | April 13, 2020

There’s a lot of information out there related to COVID-19. But right now—when it’s more important than ever to quickly access and analyze data —figuring out how to effectively use COVID-19 data to better manage your business can still be a challenge. We can help. Several customers have leveraged their Incorta platforms to instantaneously integrate COVID-19 data into their enterprise data and analytics dashboards.

Read More

Data Analytics vs Data Science Comparison

Article | March 17, 2020

The terms data science and data analytics are not unfamiliar with individuals who function within the technology field. Indeed, these two terms seem the same and most people use them as synonyms for each other. However, a large proportion of individuals are not aware that there is actually a difference between data science and data analytics.It is pertinent that individuals whose work revolves around these terms or the information and technology industries, should know how to use these terms in the appropriate contexts. The reason for this is quite simple: the right usage of these terms has significant impacts on the management and productivity of a business, especially in today’s rapidly data-dependent world.

Read More

NEW TECHNOLOGY CAN IMPROVE STORAGE CONGESTION OF AI’S MEMORY

Article | February 12, 2020

The upsurge in data generation and its computing has raised the need for more power, storage and speed. What we call as big data is extremely memory-hungry and power-sapping and to fetch this requirement, engineers have put forward an innovative method. Recently, electrical engineers at Northwestern University and the University of Messina in Italy have developed a new magnetic memory device that could potentially support the surge of data-centric computing, which requires ever-increasing power, storage, and speed. Based on antiferromagnetic (AFM) materials, the device is the smallest of its kind ever demonstrated and operates with record-low electrical current to write data.

Read More

Rethinking and Recontextualizing Context(s) in Natural Language Processing

Article | June 10, 2021

We discursive creatures are construed within a meaningful, bounded communicative environment, namely context(s) and not in a vacuum. Context(s) co-occur in different scenarios, that is, in mundane talk as well as in academic discourse where the goal of natural language communication is mutual intelligibility, hence the negotiation of meaning. Discursive research focuses on the context-sensitive use of the linguistic code and its social practice in particular settings, such as medical talk, courtroom interactions, financial/economic and political discourse which may restrict its validity when ascribing to a theoretical framework and its propositions regarding its application. This is also reflected in the case of artificial intelligence approaches to context(s) such as the development of context-sensitive parsers, context-sensitive translation machines and context-sensitive information systems where the validity of an argument and its propositions is at stake. Context is at the heart of pragmatics or even better said context is the anchor of any pragmatic theory: sociopragmatics, discourse analysis and ethnomethodological conversation analysis. Academic disciplines, such as linguistics, philosophy, anthropology, psychology and literary theory have also studied various aspects of the context phenomena. Yet, the concept of context has remained fuzzy or is generally undefined. It seems that the denotation of the word [context] has become murkier as its uses have been extended in many directions. Context or/ and contexts? Now in order to be “felicitous” integrated into the pragmatic construct, the definition of context needs some delimitations. Depending on the frame of research, context is delimitated to the global surroundings of the phenomenon to be investigated, for instance if its surrounding is of extra-linguistic nature it is called the socio-cultural context, if it comprises features of a speech situation, it is called the linguistic context and if it refers to the cognitive material, that is a mental representation, it is called the cognitive context. Context is a transcendental notion which plays a key role in interpretation. Language is no longer considered as decontextualized sentences. Instead language is seen as embedded in larger activities, through which they become meaningful. In a dynamic outlook on communication, the acts of speaking (which generates a form discourse, for instance, conversational discourse, lecture or speech) and interpreting build contexts and at the same time constrain the building of such contexts. In Heritage’s terminology, “the production of talk is doubly contextual” (Heritage 1984: 242). An utterance relies upon the existing context for its production and interpretation, and it is, in its own right, an event that shapes a new context for the action that will follow. A linguistic context can be decontextualized at a local level, and it can be recontextualized at a global level. There is intra-discursive recontextualization anchored to local decontextualization, and there is interdiscursive recontextualization anchored to global recontextualization. “A given context not only 'legislates' the interpretation of indexical elements; indexical elements can also mold the background of the context” (Ochs, 1990). In the case of recontextualization, in a particular scenario, it is valid to ask what do you mean or how do you mean. Making a reference to context and a reference to meaning helps to clarify when there is a controversy about the communicative status and at the same time provides a frame for the recontextualization. A linguistic context is intrinsically linked to a social context and a subcategory of the latter, the socio-cultural context. The social context can be considered as unmarked, hence a default context, whereas a socio-cultural context can be conceived as a marked type of context in which specific variables are interpreted in a particular mode. Culture provides us, the participants, with a filter mechanism which allows us to interpret a social context in accordance with particular socio-cultural context constraints and requirements. Besides, socially constitutive qualities of context are unavoidable since each interaction updates the existing context and prepares new ground for subsequent interaction. Now, how these aforementioned conceptualizations and views are reflected in NLP? Most of the research work has focused in the linguistic context, that is, in the word level surroundings and the lexical meaning. An approach to producing sense embeddings for the lexical meanings within a lexical knowledge base which lie in a space that is comparable to that of contextualized word vectors. Contextualized word embeddings have been used effectively across several tasks in Natural Language Processing, as they have proved to carry useful semantic information. The task of associating a word in context with the most suitable meaning from a predefined sense inventory is better known as Word Sense Disambiguation (Navigli, 2009). Linguistically speaking, “context encompasses the total linguistic and non-linguistic background of a text” (Crystal, 1991). Notice that the nature of context(s) is clearly crucial when reconstructing the meaning of a text. Therefore, “meaning-in-context should be regarded as a probabilistic weighting, of the list of potential meanings available to the user of the language.” The so-called disambiguating role of context should be taken with a pinch of salt. The main reason for language models such as BERT (Devlin et al., 2019), RoBERTA (Liu et al., 2019) and SBERT (Reimers, 2019) proved to be beneficial in most NLP task is that contextualized embeddings of words encode the semantics defined by their input context. In the same vein, a novel method for contextualized sense representations has recently been employed: SensEmBERT (Scarlini et al., 2020) which computes sense representations that can be applied directly to disambiguation. Still, there is a long way to go regarding context(s) research. The linguistic context is just one of the necessary conditions for sentence embeddedness in “a” context. For interpretation to take place, well-formed sentences and well-formed constructions, that is, linguistic strings which must be grammatical but may be constrained by cognitive sentence-processability and pragmatic relevance, particular linguistic-context and social-context configurations, which make their production and interpretation meaningful, will be needed.

Read More

Spotlight

Juice Analytics

We are the company behind Juicebox, a new kind of tool for visualizing data and building data products with the everyday decision maker in mind. Organizations are so caught up in the race to capture and analyze data that they’re rushing past the most critical component – the end user. The best data in the world is useless if the everyday decision maker can’t understand it and interact with it.

Events