How our database is turning data analytics into long term retail success

| October 30, 2018

article image
The retail landscape across Europe has experienced fundamental and sudden change in the last few years. Many major names, that have been stalwarts of the high street and shopping centres for decades, have either cut back their physical operations, embarked on financially-challenging restructuring, or disappeared completely, becoming a footnote in the history of retail. But it is not all doom and gloom, while some have struggled, the high street is home to a number of retail successes that are thriving thanks, in no small part, to their use of innovative technology, maximising the value of their data sources and using analytics to make better predictive decisions.

Spotlight

WinWire Technologies Inc

WinWire Technologies is a global IT solutions company helping enterprises navigate the digital technology revolution. We help drive exponential growth and competitive advantage for our customers through aligning business value and digital transformation. We call it stitching the digital fabric with systems of intelligence. We are a Microsoft Managed Partner with deep expertise in digital technologies, built over 10 years, including Cloud, Advanced Analytics, Internet of Things, Mobility, Security, UI/UX, Artificial Intelligence (AI) and Machine Learning.

OTHER ARTICLES

NEW TECHNOLOGY CAN IMPROVE STORAGE CONGESTION OF AI’S MEMORY

Article | February 12, 2020

The upsurge in data generation and its computing has raised the need for more power, storage and speed. What we call as big data is extremely memory-hungry and power-sapping and to fetch this requirement, engineers have put forward an innovative method. Recently, electrical engineers at Northwestern University and the University of Messina in Italy have developed a new magnetic memory device that could potentially support the surge of data-centric computing, which requires ever-increasing power, storage, and speed. Based on antiferromagnetic (AFM) materials, the device is the smallest of its kind ever demonstrated and operates with record-low electrical current to write data.

Read More
BIG DATA MANAGEMENT

Exploiting IoT Data Analytics for Business Success

Article | February 12, 2020

The Internet of Things has been the hype in the past few years. It is set to play an important role in industries. Not only businesses but also consumers attempt to follow developments that come with the connected devices. Smart meters, sensors, and manufacturing equipment all can remodel the working system of companies. Based on the Statista reports, the IoT market value of 248 billion US dollars in 2020 is expected to reach a worth of 1.6 Trillion USD by 2025. The global market is in the support of IoT development and its power to bring economic growth. But, the success of IoT without the integration of data analytics is impossible. This major growth component of IoT is the blend of IoT and Big Data - together known as IoT Data Analytics. Understanding IoT Data Analytics IoT Data Analytics is the analysis of large volumes of data that has been gathered from connected devices. As IoT devices generate a lot of data even in the shortest period, it becomes complex to analyze the enormous data volumes. Besides, the IoT data is quite similar to big data but has a major difference in their size and number of sources. To overcome the difficulty in IoT data integration, IoT data analytics is the best solution. With this combination, the process of data analysis becomes cost-effective, easier, and rapid. Why Data Analytics and IoT Will Be Indispensable? Data analytics is an important part of the success of IoT investments or applications. IoT along with Data analytics will allow businesses to make efficient use of datasets. How? Let’s get into it! Impelling Revenue Using data analytics in IoT investments businesses will become able to gain insight into customer behavior. It will lead to the crafting offers and services accordingly. As a result, companies will see a hike in their profits and revenue. Volume The vast amount of data sets that are being used by IoT applications needs to be organized and analyzed to obtain patterns. It can easily be achieved by using IoT analytics software. Competitive Advantage In an era full of IoT devices and applications, the competition has also increased. You can gain a competitive advantage by hire developers that can help with the IoT analytics implementations. It will assist businesses in providing better services and stand out from the competition. Now the next question arises: Where is it being implemented? Companies like Amazon, Microsoft, Siemens, VMware, and Huawei are using IoT data analytics for product usage analysis, sensor data analysis, camera data analysis, improved equipment maintenance, and optimizing operations. The Rise of IoT Data Analytics With the help of IoT Data Analytics, companies are ready to achieve more information that can be used to improve their overall performance and revenue. Although it has not reached every corner of the market yet, it is still being used for making the workplace more efficient and safe. The ability to analyze and predict data in real-time is definitely a game-changer for companies that need all of their equipment to work efficiently all the time. It is continuously growing to provide insights that were never possible before.

Read More

DEEP THOMAS EMBEDDING DATA-DRIVEN CULTURE ACROSS BUSINESS WITH CUTTING EDGE INNOVATION

Article | February 12, 2020

A US$ 48.3 billion-corporation, the Aditya Birla Group is in the league of Fortune 500. Anchored by an extraordinary force of over 120,000 employees belonging to 42 nationalities, the Group is built on a strong foundation of stakeholder value creation. With over 7 decades of responsible business practices, Aditya Birla Group’s businesses have grown into global powerhouses in a wide range of sectors metals, chemicals, pulp & fibre, textiles, carbon black, cement and telecom. Today, over 50% of its revenues flow from overseas operations that span 36 countries in North and South America, Africa and Asia.The Group Data ‘n’ Analytics Cell (GDNA) is the Big Data and Analytics arm of the Aditya Birla Group created at its centre to strategize and partner with 18+ Group businesses across B2B and B2C domains to deliver on its strategic priorities through the power of AI. The company represents strong analytics and domain expertise drawn from the best-in-class talent from leading global and Indian businesses that leverage cutting edge tools and advanced AI algorithms built on a highly scalable and robust big data infrastructure to mine and act upon petabytes of structured and unstructured data.

Read More

Topic modelling. Variation on themes and the Holy Grail

Article | February 12, 2020

Massive amount of data is collected and stored by companies in the search for the “Holy Grail”. One crucial component is the discovery and application of novel approaches to achieve a more complete picture of datasets provided by the local (sometimes global) event-based analytic strategy that currently dominates a specific field. Bringing qualitative data to life is essential since it provides management decisions’ context and nuance. An NLP perspective for uncovering word-based themes across documents will facilitate the exploration and exploitation of qualitative data which are often hard to “identify” in a global setting. NLP can be used to perform different analysis mapping drivers. Broadly speaking, drivers are factors that cause change and affect institutions, policies and management decision making. Being more precise, a “driver” is a force that has a material impact on a specific activity or an entity, which is contextually dependent, and which affects the financial market at a specific time. (Litterio, 2018). Major drivers often lie outside the immediate institutional environment such as elections or regional upheavals, or non-institutional factors such as Covid or climate change. In Total global strategy: Managing for worldwide competitive advantage, Yip (1992) develops a framework based on a set of four industry globalization drivers, which highlights the conditions for a company to become more global but also reflecting differentials in a competitive environment. In The lexicons: NLP in the design of Market Drivers Lexicon in Spanish, I have proposed a categorization into micro, macro drivers and temporality and a distinction among social, political, economic and technological drivers. Considering the “big picture”, “digging” beyond usual sectors and timeframes is key in state-of-the-art findings. Working with qualitative data. There is certainly not a unique “recipe” when applying NLP strategies. Different pipelines could be used to analyse any sort of textual data, from social media and reviews to focus group notes, blog comments and transcripts to name just a few when a MetaQuant team is looking for drivers. Generally, being textual data the source, it is preferable to avoid manual task on the part of the analyst, though sometimes, depending on the domain, content, cultural variables, etc. it might be required. If qualitative data is the core, then the preferred format is .csv. because of its plain nature which typically handle written responses better. Once the data has been collected and exported, the next step is to do some pre-processing. The basics include normalisation, morphosyntactic analysis, sentence structural analysis, tokenization, lexicalization, contextualization. Just simplify the data to make analysis easier. Topic modelling. Topic modelling refers to the task of recognizing words from the main topics that best describe a document or the corpus of data. LAD (Latent Dirichlet Allocation) is one of the most powerful algorithms with excellent implementations in the Python’s Gensim package. The challenge: how to extract good quality of topics that are clear and meaningful. Of course, this depends mostly on the nature of text pre-processing and the strategy of finding the optimal number of topics, the creation of a lexicon(s) and the corpora. We can say that a topic is defined or construed around the most representative keywords. But are keywords enough? Well, there are some other factors to be observed such as: 1. The variety of topics included in the corpora. 2. The choice of topic modelling algorithm. 3. The number of topics fed to the algorithm. 4. The algorithms tuning parameters. As you probably have noticed finding “the needle in the haystack” is not that easy. And only those who can use creatively NLP will have the advantage of positioning for global success.

Read More

Spotlight

WinWire Technologies Inc

WinWire Technologies is a global IT solutions company helping enterprises navigate the digital technology revolution. We help drive exponential growth and competitive advantage for our customers through aligning business value and digital transformation. We call it stitching the digital fabric with systems of intelligence. We are a Microsoft Managed Partner with deep expertise in digital technologies, built over 10 years, including Cloud, Advanced Analytics, Internet of Things, Mobility, Security, UI/UX, Artificial Intelligence (AI) and Machine Learning.

Events