How small and mid-sized businesses can perform big data analytics

HOLLY VATTER | April 15, 2019

article image
Big data doesn’t need to be a daunting challenge for small or midsized business (SMBs). Accessing, storing and exploring big data can be done by businesses of any size. An influx of data from sensors, streaming audio and video log files, web, and social media are increasing the volume, velocity, and variety of data. But that means there are new opportunities for well-prepared SMBs to uncover insights and unlock value. Harnessing big data data sets of a size or type is beyond the ability of traditional relational databases to capture, manage, and process the data– will be key when to adopting new technologies such as Artificial Intelligence (AI), machine learning and Internet of Things (IoT).

Spotlight

Hopper

Hopper is a mobile application that uses big data to predict and analyze airfare. Hopper provides travellers with the information they need to get the best deals on flights, and notifies them when prices for their flights are at their predicted lowest points. Download the app now on iOS or Android to find the best deals for your next vacation.

OTHER ARTICLES

Transforming the Gaming Industry with AI Analytics

Article | September 2, 2021

In 2020, the gaming market generated over 177 billion dollars, marking an astounding 23% growth from 2019. While it may be incredible how much revenue the industry develops, what’s more impressive is the massive amount of data generated by today’s games. There are more than 2 billion gamers globally, generating over 50 terabytes of data each day. The largest game companies in the world can host 2.5 billion unique gaming sessions in a single month and host 50 billion minutes of gameplay in the same period. The gaming industry and big data are intrinsically linked. Companies that develop capabilities in using that data to understand their customers will have a sizable advantage in the future. But doing this comes with its own unique challenges. Games have many permutations, with different game types, devices, user segments, and monetization models. Traditional analytics approaches, which rely on manual processes and interventions by operators viewing dashboards, are insufficient in the face of the sheer volume of complex data generated by games. Unchecked issues lead to costly incidents or missed opportunities that can significantly impact the user experience or the company’s bottom line. That’s why many leading gaming companies are turning to AI and Machine Learning to address these challenges. Gaming Analytics AI Gaming companies have all the data they need to understand who their users are, how they engage with the product, and whether they are likely to churn. The challenge is gaining valuable business insights into the data and taking action before opportunities pass and users leave the game. AI/ML helps bridge this gap by providing real-time, actionable insights on near limitless data streams so companies can design around these analytics and act more quickly to resolve issues. There are two fundamental categories that companies should hone in on to make the best use of their gaming data: The revenue generating opportunities in the gaming industry is one reason it’s a highly competitive market. Keeping gamers engaged requires emphasizing the user experience and continuous delivery of high-quality content personalized to a company’s most valued customers. Customer Engagement and User Experience Graphics and creative storylines are still vital, and performance issues, in particular, can be a killer for user enjoyment and drive churn. But with a market this competitive, it might not be enough to focus strictly on these issues. Games can get an edge on the competition by investing in gaming AI analytics to understand user behaviors, likes, dislikes, seasonality impacts and even hone in on what makes them churn or come back to the game after a break. AI-powered business monitoring solutions deliver value to the customer experience and create actionable insights to drive future business decisions and game designs to acquire new customers and prevent churn. AI-Enhanced Monetization and Targeted Advertising All games need a way to monetize. It’s especially true in today’s market, where users expect games to always be on and regularly deliver new content and features. A complex combination of factors influences how monetization practices and models enhance or detract from a user’s experience with a game. When monetization frustrates users, it’s typically because of aggressive, irrelevant advertising campaigns or models that aren’t well suited to the game itself or its core players. Observe the most successful products in the market, and one thing you will consistently see is highly targeted interactions. Developers can use metrics gleaned from AI analytics combined with performance marketing to appeal to their existing users and acquire new customers. With AI/ML, games can use personalized ads that cater to users’ or user segments’ behavior in real-time, optimizing the gaming experience and improving monetization outcomes. Using AI based solutions, gaming studios can also quickly identify growth opportunities and trends with real-time insight into high performing monetization models and promotions. Mobile Gaming Company Reduces Revenue Losses from Technical Incident One mobile gaming company suffered a massive loss when a bug in a software update disrupted a marketing promotion in progress. The promotion involved automatically pushing special offers and opportunities for in-app purchases across various gaming and marketing channels. When a bug in an update disrupted the promotions process, the analytics team couldn’t take immediate action because they were unaware of the issue. Their monitoring process was ad hoc, relying on the manual review of multiple dashboards, and unfortunately, by the time they discovered the problem, it was too late. The result was a massive loss for the company – a loss of users, a loss of installations, and in the end, more than 15% revenue loss from in-app purchases. The company needed a more efficient and timely way to track its cross-promotional metrics, installations, and revenue. A machine learning-based approach, like Anodot’s AI-powered gaming analytics, provides notifications in real-time to quickly find and react to any breakdowns in the system and would have prevented the worst of the impacts. Anodot’s AI-Powered Analytics for Gaming The difference between success and failure is how companies respond to the ocean of data generated by their games and their users. Anodot’s AI-powered Gaming Analytics solutions can learn expected behavior in the complex gaming universe across all permutations of gaming, including devices, levels, user segments, pricing, and ads. Anodot’s Gaming AI platform is specifically designed to monitor millions of gaming metrics and help ensure a seamless gaming experience. Anodot monitors every critical metric and establishes a baseline of standard behavior patterns to quickly alert teams to anomalies that might represent issues or opportunities. Analytics teams see how new features impact user behavior, with clear, contextual alerts for spikes, drops, purchases, and app store reviews without the need to comb over dashboards trying to find helpful information. The online gaming space represents one of the more recent areas where rapid data collection and analysis can provide a competitive differentiation. Studios using AI powered analytics will keep themselves and their players ahead of the game.

Read More
none

Natural Language Desiderata: Understanding, explaining and interpreting a model.

Article | May 3, 2021

Clear conceptualization, taxonomies, categories, criteria, properties when solving complex real-life contextualized problems is non-negotiable, a “must” to unveil the hidden potential of NPL impacting on the transparency of a model. It is common knowledge that many authors and researchers in the field of natural language processing (NLP) and machine learning (ML) are prone to use explainability and interpretability interchangeably, which from the start constitutes a fallacy. They do not mean the same, even when looking for a definition from different perspectives. A formal definition of what explanation, explainable, explainability mean can be traced to social science, psychology, hermeneutics, philosophy, physics and biology. In The Nature of Explanation, Craik (1967:7) states that “explanations are not purely subjective things; they win general approval or have to be withdrawn in the face of evidence or criticism.” Moreover, the power of explanation means the power of insight and anticipation and why one explanation is satisfactory involves a prior question why any explanation at all should be satisfactory or in machine learning terminology how a model is performant in different contextual situations. Besides its utilitarian value, that impulse to resolve a problem whether or not (in the end) there is a practical application and which will be verified or disapproved in the course of time, explanations should be “meaningful”. We come across explanations every day. Perhaps the most common are reason-giving ones. Before advancing in the realm of ExNLP, it is crucial to conceptualize what constitutes an explanation. Miller (2017) considered explanations as “social interactions between the explainer and explainee”, therefore the social context has a significant impact in the actual content of an explanation. Explanations in general terms, seek to answer the why type of question. There is a need for justification. According to Bengtsson (2003) “we will accept an explanation when we feel satisfied that the explanans reaches what we already hold to be true of the explanandum”, (being the explanandum a statement that describes the phenomenon to be explained (it is a description, not the phenomenon itself) and the explanan at least two sets of statements, used for the purpose of elucidating the phenomenon). In discourse theory (my approach), it is important to highlight that there is a correlation between understanding and explanation, first and foremost. Both are articulated although they belong to different paradigmatic fields. This dichotomous pair is perceived as a duality, which represents an irreducible form of intelligibility. When there are observable external facts subject to empirical validation, systematicity, subordination to hypothetic procedures then we can say that we explain. An explanation is inscribed in the analytical domain, the realm of rules, laws and structures. When we explain we display propositions and meaning. But we do not explain in a vacuum. The contextual situation permeates the content of an explanation, in other words, explanation is an epistemic activity: it can only relate things described or conceptualized in a certain way. Explanations are answers to questions in the form: why fact, which most authors agree upon. Understanding can mean a number of things in different contexts. According to Ricoeur “understanding precedes, accompanies and swathes an explanation, and an explanation analytically develops understanding.” Following this line of thought, when we understand we grasp or perceive the chain of partial senses as a whole in a single act of synthesis. Originally, belonging to the field of the so-called human science, then, understanding refers to a circular process and it is directed to the intentional unit of discourse whereas an explanation is oriented to the analytical structure of a discourse. Now, to ground any discussion on what interpretation is, it is crucial to highlight that the concept of interpretation opposes the concept of explanation. They cannot be used interchangeably. If considered as a unit, they composed what is called une combinaison éprouvé (a contrasted dichotomy). Besides, in dissecting both definitions we will see that the agent that performs the explanation differs from the one that produce the interpretation. At present there is a challenge of defining—and evaluating—what constitutes a quality interpretation. Linguistically speaking, “interpretation” is the complete process that encompasses understanding and explanation. It is true that there is more than one way to interprete an explanation (and then, an explanation of a prediction) but it is also true that there is a limited number of possible explanations if not a unique one since they are contextualized. And it is also true that an interpretation must not only be plausible, but more plausible than another interpretation. Of course there are certain criteria to solve this conflict. And to prove that an interpretation is more plausible based on an explanation or the knowledge could be related to the logic of validation rather than to the logic of subjective probability. Narrowing it down How are these concepts transferred from theory to praxis? What is the importance of the "interpretability" of an explainable model? What do we call a "good" explainable model? What constitutes a "good explanation"? These are some of the many questions that researchers from both academia and industry are still trying to answer. In the realm on machine learning current approaches conceptualize interpretation in a rather ad-hoc manner, motivated by practical use cases and applications. Some suggest model interpretability as a remedy, but only a few are able to articulate precisely what interpretability means or why it is important. Hence more, most in the research community and industry use this term as synonym of explainability, which is certainly not. They are not overlapping terms. Needless to say, in most cases technical descriptions of interpretable models are diverse and occasionally discordant. A model is better interpretable than another model if its decisions are easier for a human to comprehend than decisions from the other model (Molnar, 2021). For a model to be interpretable (being interpretable the quality of the model), the information conferred by an interpretation may be useful. Thus, one purpose of interpretations may be to convey useful information of any kind. In Molnar’s words the higher the interpretability of a machine learning model, the easier it is for someone to comprehend why certain decisions or predictions have been made.” I will make an observation here and add “the higher the interpretability of an explainable machine learning model”. Luo et. al. (2021) defines “interpretability as ‘the ability [of a model] to explain or to present [its predictions] in understandable terms to a human.” Notice that in this definition the author includes “understanding” as part of the definition, giving the idea of completeness. Thus, the triadic closure explanation-understanding-interpretation is fulfilled, in which the explainer and interpretant (the agents) belong to different instances and where interpretation allows the extraction and formation of additional knowledge captured by the explainable model. Now are the models inherently interpretable? Well, it is more a matter of selecting the methods of achieving interpretability: by (a) interpreting existing models via post-hoc techniques, or (b) designing inherently interpretable models, which claim to provide more faithful interpretations than post-hoc interpretation of blackbox models. The difference also lies in the agency –like I said before– , and how in one case interpretation may affect the explanation process, that is model’s inner working or just include natural language explanations of learned representations or models.

Read More

Understanding Big Data and Artificial Intelligence

Article | June 18, 2021

Data is an important asset. Data leads to innovation and organizations tend to compete for leading these innovations on a global scale. Today, every business requires data and insights to stay relevant in the market. Big Data has a huge impact on the way organizations conduct their businesses. Big Data is used in different enterprises like travel, healthcare, manufacturing, governments, and more. If they need to determine their audience, understand what clients want, forecast the needs of the customers and the clients, AI and big data analysis is vital to every decision-making scenario. When companies process the collected data accurately, they get the desired results, which leads them to their desired goals. The term Big Data has been around since the 1990s. By the time we could fully comprehend it, Big Data had already amassed a huge amount of stored data. If this data is analyzed properly, it would reveal valuable industry insights into the industry to which the data belonged. IT professionals and computer scientists realized that going through all of the data and analyzing it for the purpose was too big of a task for humans to undertake. When artificial intelligence (AI) algorithm came into the picture, it accomplished analyzing the accumulated data and deriving insights. The use of AI in Big Data is fundamental to get desired results for organizations. According to Northeastern University, the amount of data in the world was 4.4 zettabytes in 2013. By of 2020, the data rose to 44 zettabytes. When there is this amount of data produced globally, this information is invaluable to the enterprises and now can leverage AI algorithms to process it. Because of this, the companies can understand and influence customer behavior. By 2018, over 50% of countries had adopted Big Data. Let us understand what Big Data, convergence of big data and AI, and impact of AI on big data analytics. Understanding Big Data In simple words, Big Data is a term that comprises every tool and process that helps people use and manage vast sets of data. According to Gartner, Big Data is a “high-volume and/or high-variety information assets that demand cost-effective, innovative forms of information processing to enable enhanced insight, decision-making, and process automation.” The concept of Big Data was created to capture trends, preferences, and user behavior in one place called the data lake. Big Data in enterprises can help them analyze and configure their customers’ motivations and come up with new ideas for the creation of new offerings. Big Data studies different methods of extracting, analyzing, or dealing with data sets that are too complicated for traditional data processing systems. To analyze a large amount of data requires a system designed to stretch its extraction and analysis capability. Data is everywhere. This stockpile of data can give us insights and business analytics to the industry belonging to the data set. Therefore, the AI algorithms are written to benefit from large and complex data. Importance of Big Data Data is an integral part of understanding customer demographics and their motivations. When customers interact with technology in active or passive manner, these actions create a new set of data. What contributes to this data creation is what they carry with them every day - their smartphones. Their cameras, credit cards, purchased products all contribute to their growing data profile. A correctly done analysis can tell a lot about their behavior patterns, personality, and events in the customer’s life. Companies can use this information to rethink their strategies, improve on their product, and create targeted marketing campaigns, which would ultimately lead them to their target customer. Industry experts, for years and years, have discussed Big Data and its impact on businesses. Only in recent years, however, has it become possible to calculate that impact. Algorithms and software can now analyze large datasets quickly and efficiently.The forty-four zettabyte of data will only quadruple in the coming years. This collection and analysis of the data will help companies get the AI insights that will aid them in generating profits and be future-ready. Organizations have been using Big Data for a long time. Here’s how those organizations are using Big Data to drive success: Answering customer questions Using big data and analytics, companies can learn the following things: • What do customers want? • Where are they missing out on? • Who are their best and loyal customers? • Why people choose different products? Every day, as organizations gather more information, they can get more insights into sales and marketing. Once they get this data, they can optimize their campaigns to suit the customer’s needs. Learning from their online habits and with correct analysis, companies can send personalized promotional emails. These emails may prompt this target audience to convert into full-time customers. Making confident decisions As companies grow, they all need to make complex decisions. With in-depth analysis of marketplace knowledge, industry, and customers, Big Data can help you make confident choices. Big Data gives you a complete overview of everything you need to know. With the help of this, you can launch your marketing campaign or launch a new product in the market, or make a focused decision to generate the highest ROI. Once you add machine learning and AI to the mix, your Big Data collections can form a neural network to help your AI suggest useful company changes. Optimizing and Understanding Business Processes Cloud computing and machine learning help you to stay ahead by identifying opportunities in your company’s practices. Big Data analytics can tell you if your email strategy is working even when your social media marketing isn’t gaining you any following. You can also check which parts of your company culture have the right impact and result in the desired turnover. The existing evidence can help you make quick decisions and ensure you spend more of your budget on things that help your business grow. Convergence of Big Data and AI Big Data and Artificial Intelligence have a synergistic relationship. Data powers AI. The constantly evolving data sets or Big Data makes it possible for machine learning applications to learn and acquire new skills. This is what they were built to do. Big Data’s role in AI is supplying algorithms with all the essential information for developing and improving features, pattern recognition capabilities. AI and machine learning use data that has been cleansed of duplicate and unnecessary data. This clean and high-quality big data is then utilized to create and train intelligent AI algorithms, neural networks, and predictive models. AI applications rarely stop working and learning. Once the “initial training” is done (initial training is preparing already collected data), they adjust their work as and when the data changes. This makes it necessary for data to be constantly collected. When it comes to businesses using this technology, AI helps them use Big Data for analytics by making advanced tools accessible and obtainable to help users gain insights that would otherwise have been hidden in the huge amount of data. Once firms and businesses gain a hold on using AI and Big Data, they can provide decision-makers with a clear understanding of factors that affect their businesses. Impact of AI on Big Data Analytics AI supports users in the Big Data cycle, including aggregation, storage, and retrieval of diverse data types from different data sources. This includes data management, context management, decision management, action management, and risk management. Big Data can help alert problems and help find new solutions and get ideas about any new prospects. With the amount of information stream that comes in, it can be difficult to determine what is important and what isn’t. This is where AI and machine learning come in. It can help identify unusual patterns in the processes, help in the analysis, and suggest further steps to be taken. It can also learn how users interact with analytics and learn subtle differences in meanings or context-specific nuances to understand numeric data sources. AI can also caution users about anomalies, unforeseen data patterns, monitoring events, and threats from system logs or social networking data. Application of Big Data and Artificial Intelligence After establishing how AI and Big Data work together, let us look at how some applications are benefitting from their synergy: Banking and financial sectors The banking and financial sectors apply these to monitor financial marketing activities. These institutions also use AI to keep an eye on any illegal trading activities. Trading data analytics are obtained for high-frequency trading, and decision making based on trading, risk analysis, and predictive analysis. It is also used for fraud warning and detection, archival and analysis of audit trails, reporting enterprise credit, customer data transformation, etc. Healthcare AI has simplified health data prescriptions and health analysis, thus benefitting healthcare providers from the large data pool. Hospitals are using millions of collected data that allow doctors to use evidence-based medicine. Chronic diseases can be tracked faster by AI. Manufacturing and supply chain AI and Big Data in manufacturing, production management, supply chain management and analysis, and customer satisfaction techniques are flawless. The quality of products is thus much better with higher energy efficiency, reliable increase in levels, and profit increase. Governments Governments worldwide use AI applications like facial recognition, vehicle recognition for traffic management, population demographics, financial classifications, energy explorations, environmental conservation, criminal investigations, and more. Other sectors that use AI are mainly retail, entertainment, education, and more. Conclusion According to Gartner’s predictions, artificial intelligence will replace one in five workers by 2022. Firms and businesses can no longer afford to avoid using artificial intelligence and Big Data in their day-to-day. Investments in AI and Big Data analysis will be beneficial for everyone. Data sets will increase in the future, and with it, its application and investment will grow over time. Human relevance will continue to decrease as time goes by. AI enables machine learning to be the future of the development of business technologies. It will automate data analysis and find new insights that were previously impossible to imagine by processing data manually. With machine learning, AI, and Big Data, we can redraw the way we approach everything else. Frequently Asked Questions Why does big data affect artificial intelligence? Big Data and AI customize business processes and make better-suited decisions for individual needs and expectations. This improves its efficiency of processes and decisions. Data has the potential to give insights into a variety of predicted behaviors and incidents. Is AI or big data better? AI becomes better as it is fed more and more information. This information is gathered from Big Data which helps companies understand their customers better. On the other hand, Big Data is useless if there is no AI to analyze it. Humans are not capable of analyzing the data on a large scale. Is AI used in big data? When the gathered Big Data is to be analyzed, AI steps in to do the job. Big Data makes use of AI. What is the future of AI in big data? AI’s ability to work so well with data analytics is the primary reason why AI and Big Data now seem inseparable. AI machine learning and deep learning are learning from every data input and using those inputs to generate new rules for future business analytics. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why does big data affect artificial intelligence?", "acceptedAnswer": { "@type": "Answer", "text": "Big Data and AI customize business processes and make better-suited decisions for individual needs and expectations. This improves its efficiency of processes and decisions. Data has the potential to give insights into a variety of predicted behaviors and incidents." } },{ "@type": "Question", "name": "Is AI or big data better?", "acceptedAnswer": { "@type": "Answer", "text": "AI becomes better as it is fed more and more information. This information is gathered from Big Data which helps companies understand their customers better. On the other hand, Big Data is useless if there is no AI to analyze it. Humans are not capable of analyzing the data on a large scale." } },{ "@type": "Question", "name": "Is AI used in big data?", "acceptedAnswer": { "@type": "Answer", "text": "When the gathered Big Data is to be analyzed, AI steps in to do the job. Big Data makes use of AI." } },{ "@type": "Question", "name": "What is the future of AI in big data?", "acceptedAnswer": { "@type": "Answer", "text": "AI’s ability to work so well with data analytics is the primary reason why AI and Big Data now seem inseparable. AI machine learning and deep learning are learning from every data input and using those inputs to generate new rules for future business analytics." } }] }

Read More

Predictive Analytics: Enabling Businesses Achieve Accurate Data Prediction using AI

Article | July 13, 2021

We are living in the age of Big Data, and data has become the heart and the most valuable asset for businesses across industry verticals. In the hyper-competitive market that exists today, data acts as a major contributor to achieving business intelligence and brand equity. Thus, effective data management is the key to accelerating the success of businesses. For effective data management to take place, organizations must ensure that the data that is used is accurate and reliable. With the advent of AI, businesses can now leverage machine learning to predict outcomes using historical data. This is called predictive analytics. With predictive analytics, organizations can predict anything from customer turnover to forecasting equipment maintenance. Moreover, the data that is acquired through predictive analytics is of high quality and very accurate. Let us take a look at how AI enables accurate data prediction and helps businesses to equip themselves for the digital future.

Read More

Spotlight

Hopper

Hopper is a mobile application that uses big data to predict and analyze airfare. Hopper provides travellers with the information they need to get the best deals on flights, and notifies them when prices for their flights are at their predicted lowest points. Download the app now on iOS or Android to find the best deals for your next vacation.

Events