How to choose the best predictive analytics software in 2019

| February 6, 2019

article image
If only Kodak or Blockbuster could have seen into the future, what would they have done? If they’d had access to the latest predictive analytics solutions, things may have worked out very differently for their companies. Predictive analytics allows you to gain actionable insight from historical data to accurately predict future outcomes. This is leading to rapid growth with the value of the market for predictive analytics solutions set to pass the $12 billion mark by 2020. So, what should you look for when selecting the best predictive analytics software? What is predictive analytics? Let’s start with a simple definition. This kind of software identifies the patterns and trends in historical data – both structured and unstructured data – and uses predictive modelling and advanced algorithms to generate realistic predictions of future events. The more data that the predictive models have, the more accurate the predictions they will deliver.

Spotlight

Simform

Simform LLC helps enterprises unlock new growth opportunities using Mobility, Internet of Things(IoT), Business Intelligence and Analytics. We bring in a proven track record of an engineering user experience driven cloud and mobile solutions with hundreds of applications for companies ranging from Fortune 1000 companies to successful startups.

OTHER ARTICLES

How data analytics and IoT are driving insurtech growth

Article | March 17, 2020

Technology is driving change in every industry and region around the world and insurance is no different. The financial services sector is a good example of how digitally disruptive technologies such as artificial intelligence, Big Data and mobile-first banking experiences have paved the way for innovative fintechs.The insurance industry is no different. According to a report by Accenture titled The Rise of Insurtech: How Young Startups and a Mature Industry Can Bring Out the Best in One Another, for example, there is a growing recognition that the insurance industry will ultimately see the greatest benefit and the highest levels of disruption - from this global upsurge in innovation”.

Read More

3 steps to build a data fabric to integrate all your data tools

Article | May 17, 2021

One approach for better data utilization is the data fabric, a data management approach that arranges data in a single "fabric" that spans multiple systems and endpoints. The goal of the fabric is to link all data so it can easily be accessed. "DataOps and data fabric are two different but related things," said Ed Thompson, CTO at Matillion, which provides a cloud data integration platform. "DataOps is about taking practices which are common in modern software development and applying them to data projects. Data fabric is about the type of data landscape that you create and how the tools that you use work together."

Read More

Saurav Singla, the machine learning guru, empowering society

Article | December 10, 2020

Saurav Singla is a Senior Data Scientist, a Machine Learning Expert, an Author, a Technical Writer, a Data Science Course Creator and Instructor, a Mentor, a Speaker. While Media 7 has followed Saurav Singla’s story closely, this chat with Saurav was about analytics, his journey as a data scientist, and what he brings to the table with his 15 years of extensive statistical modeling, machine learning, natural language processing, deep learning, and data analytics across Consumer Durable, Retail, Finance, Energy, Human Resource and Healthcare sectors. He has grown multiple businesses in the past and is still a researcher at heart. In the past, Analytics and Predictive Modeling is predominant in few industries but in current times becoming an eminent part of emerging fields such as health, human resource management, pharma, IoT, and other smart solutions as well. Saurav had worked in data science since 2003. Over the years, he realized that all the people they had hired — whether they are from business or engineering backgrounds — needed extensive training to be able to perform analytics on real-world business datasets. He got an opportunity to move to Australia in the year 2003. He joined a retail company Harvey Norman in Australia, working out of their Melbourne office for four years. After moving back to India, in 2008, he joined one of the verticals of Siemens — one of the few companies in India then using analytics services in-house for eight years. He is a very passionate believer that the use of data and analytics will dramatically change not only corporations but also our societies. Building and expanding the application of analytics for supply chain, logistics, sales, marketing, finance at Siemens was a very fulfilling and enjoyable experience for him. Siemens was a tremendously rewarding and enjoyable experience for him. He grew the team from zero to fifteen while he was the data scientist leader. He believes those eight years taught him how to think big, scale organizations using data science. He has demonstrated success in developing and seamlessly executing plans in complex organizational structures. He has also been recognized for maximizing performance by implementing appropriate project management tools through analysis of details to ensure quality control and understanding of emerging technology. In the year 2016, he started getting a serious inner push to start thinking about joining a consulting and shifted to a company based out in Delhi NCR. During his ten-month path with them, he improved the way clients and businesses implement and exploit machine learning in their consumer commitments. As part of that vision, he developed class-defining applications that eliminate tension technologies, processes, and humans. Another main aspect of his plan was to ensure that it was affected in very fast agile cycles. Towards that he was actively innovating on operating and engagement models. In the year 2017, he moved to London and joined a digital technology company, and assisted in building artificial intelligence and machine learning products for their clients. He aimed to solve problems and transform the costs using technology and machine learning. He was associated with them for 2 years. At the beginning of the year 2018, he joined Mindrops. He developed advanced machine learning technologies and processes to solve client problems. Mentored the Data Science function and guide them in the development of the solution. He built robust clients Data Science capabilities which can be scalable across multiple business use cases. Outside work, Saurav associated with Mentoring Club and Revive. He volunteers in his spare time for helping, coaching, and mentoring young people in taking up careers in the data science domain, data practitioners to build high-performing teams and grow the industry. He assists data science enthusiasts to stay motivated and guide them along their career path. He helps fill the knowledge gap and help aspirants understand the core of the industry. He helps aspirants analyze their progress and help them upskill accordingly. He also helps them connect with potential job opportunities with their industry-leading network. Additionally, in the year 2018, he joined as a mentor in the Transaction Behavioral Intelligence company that accelerates business growth for banks with the use of Artificial Intelligence and Machine Learning enabled products. He is guiding their machine learning engineers with their projects. He is enhancing the capabilities of their AI-driven recommendation engine product. Saurav is teaching the learners to grasp data science knowledge more engaging way by providing courses on the Udemy marketplace. He has created two courses on Udemy, with over twenty thousand students enrolled in it. He regularly speaks at meetups on data science topics and writes articles on data science topics in major publications such as AI Time Journal, Towards Data Science, Data Science Central, Kdnuggets, Data-Driven Investor, HackerNoon, and Infotech Report. He actively contributes academic research papers in machine learning, deep learning, natural language processing, statistics and artificial intelligence. His book on Machine Learning for Finance was published by BPB Publications which is Asia's largest publisher of Computer and IT Books. This is possibly one of the biggest milestones of his career. Saurav turned his passion to make knowledge available for society. Saurav believes sharing knowledge is cool, and he wishes everyone should have that passion for knowledge sharing. That would be his success.

Read More

How Better Asset Data Drives Better Capital Planning

Article | April 16, 2021

What are your physical assets telling you? Are they performing to design capacity? Are they providing the expected return on investment? Are they aging and in need of capital investment or replacement? We live in an increasingly data-rich environment, and successful companies must take full advantage of transforming data to information. Among manufacturers there’s growing awareness of how data and analytics can drive operations and maintenance, predicting breakdowns and reducing downtime. However, it’s possible to go further. A mostly untapped opportunity for manufacturers exists in the use of operational data from the factory floor to inform better capital allocation decisions.

Read More

Spotlight

Simform

Simform LLC helps enterprises unlock new growth opportunities using Mobility, Internet of Things(IoT), Business Intelligence and Analytics. We bring in a proven track record of an engineering user experience driven cloud and mobile solutions with hundreds of applications for companies ranging from Fortune 1000 companies to successful startups.

Events