Big Data Management, Data Science, Big Data
Article | April 28, 2023
Since the internet became popular, the way we purchase things has evolved from a simple process to a more complicated process. Unlike traditional shopping, it is not possible to experience the products first-hand when purchasing online. Not only this, but there are more options or variants in a single product than ever before, which makes it more challenging to decide.
To not make a bad investment, the consumer has to rely heavily on the customer reviews posted by people who are using the product. However, sorting through relevant reviews at multiple eCommerce platforms of different products and then comparing them to choose can work too much. To provide a solution to this problem, Amazon has come up with sentiment analysis using product review data. Amazon performs sentiment analysis on product review data with Artificial Intelligence technology to develop the best suitable products for the customer. This technology enables Amazon to create products that are most likely to be ideal for the customer.
A consumer wants to search for only relevant and useful reviews when deciding on a product. A rating system is an excellent way to determine the quality and efficiency of a product. However, it still cannot provide complete information about the product as ratings can be biased. Textual detailed reviews are necessary to improve the consumer experience and in helping them make informed choices. Consumer experience is a vital tool to understand the customer's behavior and increase sales.
Amazon has come up with a unique way to make things easier for their customers. They do not promote products that look similar to the other customer's search history. Instead, they recommend products that are similar to the product a user is searching for. This way, they guide the customer using the correlation between the products.
To understand this concept better, we must understand how Amazon's recommendation algorithm has upgraded with time.
The history of Amazon's recommendation algorithm
Before Amazon started a sentiment analysis of customer product reviews using machine learning, they used the same collaborative filtering to make recommendations. Collaborative filtering is the most used way to recommend products online. Earlier, people used user-based collaborative filtering, which was not suitable as there were many uncounted factors.
Researchers at Amazon came up with a better way to recommend products that depend on the correlation between products instead of similarities between customers. In user-based collaborative filtering, a customer would be shown recommendations based on people's purchase history with similar search history. In item-to-item collaborative filtering, people are shown recommendations of similar products to their recent purchase history. For example, if a person bought a mobile phone, he will be shown hints of that phone's accessories.
Amazon's Personalization team found that using purchase history at a product level can provide better recommendations. This way of filtering also offered a better computational advantage. User-based collaborative filtering requires analyzing several users that have similar shopping history. This process is time-consuming as there are several demographic factors to consider, such as location, gender, age, etc. Also, a customer's shopping history can change in a day. To keep the data relevant, you would have to update the index storing the shopping history daily.
However, item-to-item collaborative filtering is easy to maintain as only a tiny subset of the website's customers purchase a specific product. Computing a list of individuals who bought a particular item is much easier than analyzing all the site's customers for similar shopping history. However, there is a proper science between calculating the relatedness of a product. You cannot merely count the number of times a person bought two items together, as that would not make accurate recommendations.
Amazon research uses a relatedness metric to come up with recommendations. If a person purchased an item X, then the item Y will only be related to the person if purchasers of item X are more likely to buy item Y. If users who purchased the item X are more likely to purchase the item Y, then only it is considered to be an accurate recommendation.
Conclusion
In order to provide a good recommendation to a customer, you must show products that have a higher chance of being relevant. There are countless products on Amazon's marketplace, and the customer will not go through several of them to figure out the best one. Eventually, the customer will become frustrated with thousands of options and choose to try a different platform. So Amazon has to develop a unique and efficient way to recommend the products that work better than its competition.
User-based collaborative filtering was working fine until the competition increased. As the product listing has increased in the marketplace, you cannot merely rely on previous working algorithms. There are more filters and factors to consider than there were before. Item-to-item collaborative filtering is much more efficient as it automatically filters out products that are likely to be purchased. This limits the factors that require analysis to provide useful recommendations.
Amazon has grown into the biggest marketplace in the industry as customers trust and rely on its service. They frequently make changes to fit the recent trends and provide the best customer experience possible.
Read More
Business Intelligence, Big Data Management, Big Data
Article | May 15, 2023
The marketing industry keeps changing every year. Businesses and enterprises have the task of keeping up with the changes in marketing trends as they evolve. As consumer demands and behavior changed, brands had to move from traditional marketing channels like print and electronic to digital channels like social media, Google Ads, YouTube, and more. Businesses have begun to consider marketing analytics a crucial component of marketing as they are the primary reason for success.
In uncertain times, marketing analytics tools calculate and evaluate the market status and enhances better planning for enterprises.
As Covid-19 hit the world, organizations that used traditional marketing analytics tools and relied on historical data realized that many of these models became irrelevant. The pandemic rendered a lot of data useless.
With machine learning (ML) and artificial intelligence (AI) in marketers’ arsenal, marketing analytics is turning virtual with a shift in the marketing landscape in 2021. They are also pivoting from relying on just AI technologies but rather combining big data with it.
AI and machine learning help advertisers and marketers to improve their target audience and re-strategize their campaigns through advanced marketing attributes, which in turn increases customer retention and customer loyalty.
While technology is making targeting and measuring possible, marketers have had to reassure their commitment to consumer privacy and data regulations and governance in their initiatives. They are also relying on third-party data.
These data and analytics trends will help organizations deal with radical changes and uncertainties, with opportunities they bring with them over the next few years.
To know why businesses are gravitating towards these trends in marketing analytics, let us look at why it is so important.
Importance of Marketing Analytics
As businesses extended into new marketing categories, new technologies were implemented to support them. This new technology was usually deployed in isolation, which resulted in assorted and disconnected data sets.
Usually, marketers based their decisions on data from individual channels like website metrics, not considering other marketers channels. Website and social media metrics alone are not enough. In contrast, marketing analytics tools look at all marketing done across channels over a period of time that is vital for sound decision-making and effective program execution.
Marketing analytics helps understand how well a campaign is working to achieve business goals or key performance indicators.
Marketing analytics allows you to answer questions like:
• How are your marketing initiatives/ campaigns working? What can be done to improve them?
• How do your marketing campaigns compare with others? What are they spending their time and money on? What marketing analytics software are they using that helps them?
• What should be your next step? How should you allocate the marketing budget according to your current spending?
Now that the advantages of marketing analytics are clear, let us get into the details of the trends in marketing analytics of 2021:
Rise of real-time marketing data analytics
Reciprocation to any action is the biggest trend right now in digital marketing, especially post Covid. Brands and businesses strive to respond to customer queries and provide them with solutions. Running queries in a low-latency customer data platform have allowed marketers to filter the view by the audience and identify underachieving sectors. Once this data is collected, businesses and brands can then readjust their customer targeting and messaging to optimize their performance.
To achieve this on a larger scale, organizations need to invest in marketing analytics software and platforms to balance data loads with processing for business intelligence and analytics. The platform needs to allow different types of jobs to run parallel by adding resources to groups as required. This gives data scientists more flexibility and access to response data at any given time.
Real-time analytics will also aid marketers in identifying underlying threats and problems in their strategies. Marketers will have to conduct a SWOT analysis and continuously optimize their campaigns to suit them better.
.
Data security, regulatory compliance, and protecting consumer privacy
Protecting market data from a rise in cybercrimes and breaches are crucial problems to be addressed in 2021. This year has seen a surge in data breaches that have damaged businesses and their infrastructures to different levels. As a result, marketers have increased their investments in encryption, access control, network monitoring, and other security measures.
To help comply with the General Data Protection Regulation (GDPR) of the European Union, the California Consumer Privacy Act (CCPA), and other regulatory bodies, organizations have made the shift to platforms where all consumer data is in one place. Advanced encryptions and stateless computing have made it possible to securely store and share governed data that can be kept in a single location. Interacting with a single copy of the same data will help compliance officers tasked with identifying and deleting every piece of information related to a particular customer much easier and the possibility of overseeing something gets canceled.
Protecting consumer privacy is imperative for marketers. They offer consumers the control to opt out, eradicate their data once they have left the platform, and remove information like location, access control to personally identifiable information like email addresses and billing details separated from other marketing data.
Predictive analytics
Predictive analytics’ analyzes collected data and predicts future outcomes through ML and AI. It maps out a lookalike audience and identifies which strata are most likely to become a high-value customer and which customer strata has the highest likelihood of churn. It also gauges people’s interests based on their browsing history. With better ML models, predictions have become better overtime, leading to increased customer retention and a drop in churn.
According to the research by Zion Market Research, by 2022, the global market for predictive analytics is set to hit $11 billion.
Investment in first-party data
Cookies-enabled website tracking led marketers to know who was visiting their website and re-calibrate their ads to these people throughout the web.
However, in 2020, Google announced cookies would be phased out of Chrome within two years while they had already removed them from Safari and Firefox.
Now that adding low-friction tracking to web pages will be tough, marketers will have to gather more limited data. This will then be then integrated with first-party data sets to get a rounded view of the customer. Although a big win for consumer privacy activists, it is difficult for advertisers and agencies to find it more difficult to retarget ads and build audiences in their data management platforms.
In a digital world without cookies, marketers now understand how customer data is collected, introspect on their marketing models, and evaluate their marketing strategy.
Emergence of contextual customer experience
These trends in marketing analytics have become more contextually conscious since the denunciation of cookies. Since marketers are losing their data sets and behavioral data, they have an added motivation to invest in insights.
This means that marketers have to target messaging based on known and inferred customer characteristics like their age, location, income, brand affinity, and where these customers are in their buying journey. For example, marketers should tailor messaging in ads to make up consumers based on the frequency of their visits to the store.
Effective contextual targeting hinges upon marketers using a single platform for their data and creates a holistic customer profile.
Reliance on third-party data
Even though there has been a drop in third-party data collection, marketers will continue to invest in third-party data which have a complete understanding of their customers that augments the first-party data they have.
Historically, third-party data has been difficult to source and maintain for marketers. There are new platforms that counter improvement of data like long time to value, cost of maintaining third-party data pipelines, and data governance problems.
U.S. marketers have spent upwards of $11.9 billion on third-party audience data in 2019, up 6.1% from 2018, and this reported growth curve is going to be even steeper in 2021, according to a study by Interactive Advertising Bureau and Winterberry Group.
Conclusion
Marketing analytics enables more successful marketing as it shows off direct results of the marketing efforts and investments.
These new marketing data analytics trends have made their definite mark and are set to make this year interesting with data and AI-based applications mixed with the changing landscape of marketing channels. Digital marketing will be in demand more than ever as people are purchasing more online.
Frequently Asked Questions
Why is marketing analytics so important?
Marketing analytics has two main purposes; to gauge how well your marketing efforts perform and measure the effectiveness of marketing activity.
What is the use of marketing analytics?
Marketing analytics help us understand how everything plays off of each other and decide how to invest, whether to re-prioritize or keep going with the current methods.
Which industries use marketing analytics?
Commercial organizations use it to analyze data from different sources, use analytics to determine the success of a marketing campaign, and target customers specifically.
What are the types of marketing analytics tools?
Some marketing analytics’ tools are Google Analytics, HubSpot Marketing Hub, Semrush, Looker, Optimizely, etc.
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "Why is marketing analytics so important?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Marketing analytics has two main purposes; to gauge how well your marketing efforts perform and measure the effectiveness of marketing activity."
}
},{
"@type": "Question",
"name": "What is the use of marketing analytics?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Marketing analytics help us understand how everything plays off of each other and decide how to invest, whether to re-prioritize or keep going with the current methods."
}
},{
"@type": "Question",
"name": "Which industries use marketing analytics?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Commercial organizations use it to analyze data from different sources, use analytics to determine the success of a marketing campaign, and target customers specifically."
}
},{
"@type": "Question",
"name": "What are the types of marketing analytics tools?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Some marketing analytics’ tools are Google Analytics, HubSpot Marketing Hub, Semrush, Looker, Optimizely, etc."
}
}]
}
Read More
Performance Management
Article | May 30, 2023
The Internet of Things has been the hype in the past few years. It is set to play an important role in industries. Not only businesses but also consumers attempt to follow developments that come with the connected devices. Smart meters, sensors, and manufacturing equipment all can remodel the working system of companies.
Based on the Statista reports, the IoT market value of 248 billion US dollars in 2020 is expected to reach a worth of 1.6 Trillion USD by 2025. The global market is in the support of IoT development and its power to bring economic growth. But, the success of IoT without the integration of data analytics is impossible. This major growth component of IoT is the blend of IoT and Big Data - together known as IoT Data Analytics.
Understanding IoT Data Analytics
IoT Data Analytics is the analysis of large volumes of data that has been gathered from connected devices. As IoT devices generate a lot of data even in the shortest period, it becomes complex to analyze the enormous data volumes. Besides, the IoT data is quite similar to big data but has a major difference in their size and number of sources. To overcome the difficulty in IoT data integration, IoT data analytics is the best solution. With this combination, the process of data analysis becomes cost-effective, easier, and rapid.
Why Data Analytics and IoT Will Be Indispensable?
Data analytics is an important part of the success of IoT investments or applications. IoT along with Data analytics will allow businesses to make efficient use of datasets. How?
Let’s get into it!
Impelling Revenue
Using data analytics in IoT investments businesses will become able to gain insight into customer behavior. It will lead to the crafting offers and services accordingly. As a result, companies will see a hike in their profits and revenue.
Volume
The vast amount of data sets that are being used by IoT applications needs to be organized and analyzed to obtain patterns. It can easily be achieved by using IoT analytics software.
Competitive Advantage
In an era full of IoT devices and applications, the competition has also increased. You can gain a competitive advantage by hire developers that can help with the IoT analytics implementations. It will assist businesses in providing better services and stand out from the competition.
Now the next question arises: Where is it being implemented? Companies like Amazon, Microsoft, Siemens, VMware, and Huawei are using IoT data analytics for product usage analysis, sensor data analysis, camera data analysis, improved equipment maintenance, and optimizing operations.
The Rise of IoT Data Analytics
With the help of IoT Data Analytics, companies are ready to achieve more information that can be used to improve their overall performance and revenue. Although it has not reached every corner of the market yet, it is still being used for making the workplace more efficient and safe.
The ability to analyze and predict data in real-time is definitely a game-changer for companies that need all of their equipment to work efficiently all the time. It is continuously growing to provide insights that were never possible before.
Read More
Data Science
Article | December 23, 2020
Introduction
Nowadays, everyone with some technical expertise and a data science bootcamp under their belt calls themselves a data scientist. Also, most managers don't know enough about the field to distinguish an actual data scientist from a make-believe one someone who calls themselves a data science professional today but may work as a cab driver next year. As data science is a very responsible field dealing with complex problems that require serious attention and work, the data scientist role has never been more significant. So, perhaps instead of arguing about which programming language or which all-in-one solution is the best one, we should focus on something more fundamental. More specifically, the thinking process of a data scientist.
The challenges of the Data Science professional
Any data science professional, regardless of his specialization, faces certain challenges in his day-to-day work. The most important of these involves decisions regarding how he goes about his work. He may have planned to use a particular model for his predictions or that model may not yield adequate performance (e.g., not high enough accuracy or too high computational cost, among other issues). What should he do then? Also, it could be that the data doesn't have a strong enough signal, and last time I checked, there wasn't a fool-proof method on any data science programming library that provided a clear-cut view on this matter. These are calls that the data scientist has to make and shoulder all the responsibility that goes with them.
Why Data Science automation often fails
Then there is the matter of automation of data science tasks. Although the idea sounds promising, it's probably the most challenging task in a data science pipeline. It's not unfeasible, but it takes a lot of work and a lot of expertise that's usually impossible to find in a single data scientist. Often, you need to combine the work of data engineers, software developers, data scientists, and even data modelers. Since most organizations don't have all that expertise or don't know how to manage it effectively, automation doesn't happen as they envision, resulting in a large part of the data science pipeline needing to be done manually.
The Data Science mindset overall
The data science mindset is the thinking process of the data scientist, the operating system of her mind. Without it, she can't do her work properly, in the large variety of circumstances she may find herself in. It's her mindset that organizes her know-how and helps her find solutions to the complex problems she encounters, whether it is wrangling data, building and testing a model or deploying the model on the cloud. This mindset is her strategy potential, the think tank within, which enables her to make the tough calls she often needs to make for the data science projects to move forward.
Specific aspects of the Data Science mindset
Of course, the data science mindset is more than a general thing. It involves specific components, such as specialized know-how, tools that are compatible with each other and relevant to the task at hand, a deep understanding of the methodologies used in data science work, problem-solving skills, and most importantly, communication abilities. The latter involves both the data scientist expressing himself clearly and also him understanding what the stakeholders need and expect of him. Naturally, the data science mindset also includes organizational skills (project management), the ability to work well with other professionals (even those not directly related to data science), and the ability to come up with creative approaches to the problem at hand.
The Data Science process
The data science process/pipeline is a distillation of data science work in a comprehensible manner. It's particularly useful for understanding the various stages of a data science project and help plan accordingly. You can view one version of it in Fig. 1 below. If the data science mindset is one's ability to navigate the data science landscape, the data science process is a map of that landscape. It's not 100% accurate but good enough to help you gain perspective if you feel overwhelmed or need to get a better grip on the bigger picture.
Learning more about the topic
Naturally, it's impossible to exhaust this topic in a single article (or even a series of articles). The material I've gathered on it can fill a book! If you are interested in such a book, feel free to check out the one I put together a few years back; it's called Data Science Mindset, Methodologies, and Misconceptions and it's geared both towards data scientist, data science learners, and people involved in data science work in some way (e.g. project leaders or data analysts). Check it out when you have a moment. Cheers!
Read More