Hybrid Cloud for Streaming & Real-Time Analytics (Special Report)

| December 24, 2019

article image
Such rapid analysis of streaming data requires significant and highly variable amounts of compute and data storage capacity. And in many cases, the various stages of the process (e.g., model training and tuning, data ingestion, and analysis) have distinctly different compute requirements, which can vary over time.Traditional compute infrastructures for high-performance computing and big data analysis will not do the job. What’s needed is a highly scalable infrastructure that supports very dynamic development  environments, deployment scenarios, and integration of new technologies.

Spotlight

DB Best Technologies

DB Best is internationally known for comprehensive data-management services, database development and migration, as well as creation of highly successful web and mobile systems. Hundreds of customers rely on our 200 developers and architects for cost-effective strategies in migrating and modernizing their application assets…

OTHER ARTICLES

Saurav Singla, the machine learning guru, empowering society

Article | December 10, 2020

Saurav Singla is a Senior Data Scientist, a Machine Learning Expert, an Author, a Technical Writer, a Data Science Course Creator and Instructor, a Mentor, a Speaker. While Media 7 has followed Saurav Singla’s story closely, this chat with Saurav was about analytics, his journey as a data scientist, and what he brings to the table with his 15 years of extensive statistical modeling, machine learning, natural language processing, deep learning, and data analytics across Consumer Durable, Retail, Finance, Energy, Human Resource and Healthcare sectors. He has grown multiple businesses in the past and is still a researcher at heart. In the past, Analytics and Predictive Modeling is predominant in few industries but in current times becoming an eminent part of emerging fields such as health, human resource management, pharma, IoT, and other smart solutions as well. Saurav had worked in data science since 2003. Over the years, he realized that all the people they had hired — whether they are from business or engineering backgrounds — needed extensive training to be able to perform analytics on real-world business datasets. He got an opportunity to move to Australia in the year 2003. He joined a retail company Harvey Norman in Australia, working out of their Melbourne office for four years. After moving back to India, in 2008, he joined one of the verticals of Siemens — one of the few companies in India then using analytics services in-house for eight years. He is a very passionate believer that the use of data and analytics will dramatically change not only corporations but also our societies. Building and expanding the application of analytics for supply chain, logistics, sales, marketing, finance at Siemens was a very fulfilling and enjoyable experience for him. Siemens was a tremendously rewarding and enjoyable experience for him. He grew the team from zero to fifteen while he was the data scientist leader. He believes those eight years taught him how to think big, scale organizations using data science. He has demonstrated success in developing and seamlessly executing plans in complex organizational structures. He has also been recognized for maximizing performance by implementing appropriate project management tools through analysis of details to ensure quality control and understanding of emerging technology. In the year 2016, he started getting a serious inner push to start thinking about joining a consulting and shifted to a company based out in Delhi NCR. During his ten-month path with them, he improved the way clients and businesses implement and exploit machine learning in their consumer commitments. As part of that vision, he developed class-defining applications that eliminate tension technologies, processes, and humans. Another main aspect of his plan was to ensure that it was affected in very fast agile cycles. Towards that he was actively innovating on operating and engagement models. In the year 2017, he moved to London and joined a digital technology company, and assisted in building artificial intelligence and machine learning products for their clients. He aimed to solve problems and transform the costs using technology and machine learning. He was associated with them for 2 years. At the beginning of the year 2018, he joined Mindrops. He developed advanced machine learning technologies and processes to solve client problems. Mentored the Data Science function and guide them in the development of the solution. He built robust clients Data Science capabilities which can be scalable across multiple business use cases. Outside work, Saurav associated with Mentoring Club and Revive. He volunteers in his spare time for helping, coaching, and mentoring young people in taking up careers in the data science domain, data practitioners to build high-performing teams and grow the industry. He assists data science enthusiasts to stay motivated and guide them along their career path. He helps fill the knowledge gap and help aspirants understand the core of the industry. He helps aspirants analyze their progress and help them upskill accordingly. He also helps them connect with potential job opportunities with their industry-leading network. Additionally, in the year 2018, he joined as a mentor in the Transaction Behavioral Intelligence company that accelerates business growth for banks with the use of Artificial Intelligence and Machine Learning enabled products. He is guiding their machine learning engineers with their projects. He is enhancing the capabilities of their AI-driven recommendation engine product. Saurav is teaching the learners to grasp data science knowledge more engaging way by providing courses on the Udemy marketplace. He has created two courses on Udemy, with over twenty thousand students enrolled in it. He regularly speaks at meetups on data science topics and writes articles on data science topics in major publications such as AI Time Journal, Towards Data Science, Data Science Central, Kdnuggets, Data-Driven Investor, HackerNoon, and Infotech Report. He actively contributes academic research papers in machine learning, deep learning, natural language processing, statistics and artificial intelligence. His book on Machine Learning for Finance was published by BPB Publications which is Asia's largest publisher of Computer and IT Books. This is possibly one of the biggest milestones of his career. Saurav turned his passion to make knowledge available for society. Saurav believes sharing knowledge is cool, and he wishes everyone should have that passion for knowledge sharing. That would be his success.

Read More
DATA SCIENCE

Man Vs. Machine: Peaking into the Future of Artificial Intelligence

Article | March 15, 2021

Stephen Hawking, one of the finest minds to have ever lived, once famously said, “AI is likely to be either the best or the worst thing to happen to humanity.” This is of course true, with valid arguments both for and against the proliferation of AI. As a practitioner, I have witnessed the AI revolution at close quarters as it unfolded at breathtaking pace over the last two decades. My personal view is that there is no clear black and white in this debate. The pros and cons are very contextual – who is developing it, for what application, in what timeframe, towards what end? It always helps to understand both sides of the debate. So let’s try to take a closer look at what the naysayers say. The most common apprehensions can be clubbed into three main categories: A. Large-scale Unemployment: This is the most widely acknowledged of all the risks of AI. Technology and machines replacing humans for doing certain types of work isn’t new. We all know about entire professions dwindling, and even disappearing, due to technology. Industrial Revolution too had led to large scale job losses, although many believe that these were eventually compensated for by means of creating new avenues, lowering prices, increasing wages etc. However, a growing number of economists no longer subscribe to the belief that over a longer term, technology has positive ramifications on overall employment. In fact, multiple studies have predicted large scale job losses due to technological advancements. A 2016 UN report concluded that 75% of jobs in the developing world are expected to be replaced by machines! Unemployment, particularly at a large scale, is a very perilous thing, often resulting in widespread civil unrest. AI’s potential impact in this area therefore calls for very careful political, sociological and economic thinking, to counter it effectively. B. Singularity: The concept of Singularity is one of those things that one would have imagined seeing only in the pages of a futuristic Sci-Fi novel. However, in theory, today it is a real possibility. In a nutshell, Singularity refers to that point in human civilization when Artificial Intelligence reaches a tipping point beyond which it evolves into a superintelligence that surpasses human cognitive powers, thereby potentially posing a threat to human existence as we know it today. While the idea around this explosion of machine intelligence is a very pertinent and widely discussed topic, unlike the case of technology driven unemployment, the concept remains primarily theoretical. There is as yet no consensus amongst experts on whether this tipping point can ever really be reached in reality. C. Machine Consciousness: Unlike the previous two points, which can be regarded as risks associated with the evolution of AI, the aspect of machine consciousness perhaps is best described as an ethical conundrum. The idea deals with the possibility of implanting human-like consciousness into machines, taking them beyond the realm of ‘thinking’ to that of ‘feeling, emotions and beliefs’. It’s a complex topic and requires delving into an amalgamation of philosophy, cognitive science and neuroscience. ‘Consciousness’ itself can be interpreted in multiple ways, bringing together a plethora of attributes like self-awareness, cause-effect in mental states, memory, experiences etc. To bring machines to a state of human-like consciousness would entail replicating all the activities that happen at a neural level in a human brain – by no means a meagre task. If and when this were to be achieved, it would require a paradigm shift in the functioning of the world. Human society, as we know it, will need a major redefinition to incorporate machines with consciousness co-existing with humans. It sounds far-fetched today, but questions such as this need pondering right now, so as to be able to influence the direction in which we move when it comes to AI and machine consciousness, while things are still in the ‘design’ phase so to speak. While all of the above are pertinent questions, I believe they don’t necessarily outweigh the advantages of AI. Of course, there is a need to address them systematically, control the path of AI development and minimize adverse impact. In my opinion, the greatest and most imminent risk is actually a fourth item, not often taken into consideration, when discussing the pitfalls of AI. D. Oligarchy: Or to put it differently, the question of control. Due to the very nature of AI – it requires immense investments in technology and science – there are realistically only a handful of organizations (private or government) that can make the leap into taking AI into the mainstream, in a scalable manner, and across a vast array of applications. There is going to be very little room for small upstarts, however smart they might be, to compete at scale against these. Given the massive aspects of our lives that will likely be steered by AI enabled machines, those who control that ‘intelligence’ will hold immense power over the rest of us. That all familiar phrase ‘with great power, comes great responsibility’ will take a whole new meaning – the organizations and/or individuals that are at the forefront of the generally available AI applications would likely have more power than the most despotic autocrats in history. This is a true and real hazard, aspects of which are already becoming areas of concern in the form of discussions around things like privacy. In conclusion, AI, like all major transformative events in human history, is certain to have wide reaching ramifications. But with careful forethought these can be addressed. In the short to medium term, the advantages of AI in enhancing our lives, will likely outweigh these risks. Any major conception that touches human lives in a broad manner, if not handled properly, can pose immense danger. The best analogy I can think of is religion – when not channelled appropriately, it probably poses a greater threat than any technological advancement ever could.

Read More

Data Analytics Convergence: Business Intelligence(BI) Meets Machine Learning (ML)

Article | July 29, 2020

Headquartered in London, England, BP (NYSE: BP) is a multinational oil and gas company. Operating since 1909, the organization offers its customers with fuel for transportation, energy for heat and light, lubricants to keep engines moving, and the petrochemicals products. Business intelligence has always been a key enabler for improving decision making processes in large enterprises from early days of spreadsheet software to building enterprise data warehouses for housing large sets of enterprise data and to more recent developments of mining those datasets to unearth hidden relationships. One underlying theme throughout this evolution has been the delegation of crucial task of finding out the remarkable relationships between various objects of interest to human beings. What BI technology has been doing, in other words, is to make it possible (and often easy too) to find the needle in the proverbial haystack if you somehow know in which sectors of the barn it is likely to be. It is a validatory as opposed to a predictory technology. When the amount of data is huge in terms of variety, amount, and dimensionality (a.k.a. Big Data) and/or the relationship between datasets are beyond first-order linear relationships amicable to human intuition, the above strategy of relying solely on humans to make essential thinking about the datasets and utilizing machines only for crucial but dumb data infrastructure tasks becomes totally inadequate. The remedy to the problem follows directly from our characterization of it: finding ways to utilize the machines beyond menial tasks and offloading some or most of cognitive work from humans to the machines. Does this mean all the technology and associated practices developed over the decades in BI space are not useful anymore in Big Data age? Not at all. On the contrary, they are more useful than ever: whereas in the past humans were in the driving seat and controlling the demand for the use of the datasets acquired and curated diligently, we have now machines taking up that important role and hence unleashing manifold different ways of using the data and finding out obscure, non-intuitive relationships that allude humans. Moreover, machines can bring unprecedented speed and processing scalability to the game that would be either prohibitively expensive or outright impossible to do with human workforce. Companies have to realize both the enormous potential of using new automated, predictive analytics technologies such as machine learning and how to successfully incorporate and utilize those advanced technologies into the data analysis and processing fabric of their existing infrastructure. It is this marrying of relatively old, stable technologies of data mining, data warehousing, enterprise data models, etc. with the new automated predictive technologies that has the huge potential to unleash the benefits so often being hyped by the vested interests of new tools and applications as the answer to all data analytical problems. To see this in the context of predictive analytics, let's consider the machine learning(ML) technology. The easiest way to understand machine learning would be to look at the simplest ML algorithm: linear regression. ML technology will build on basic interpolation idea of the regression and extend it using sophisticated mathematical techniques that would not necessarily be obvious to the causal users. For example, some ML algorithms would extend linear regression approach to model non-linear (i.e. higher order) relationships between dependent and independent variables in the dataset via clever mathematical transformations (a.k.a kernel methods) that will express those non-linear relationship in a linear form and hence suitable to be run through a linear algorithm. Be it a simple linear algorithm or its more sophisticated kernel methods variation, ML algorithms will not have any context on the data they process. This is both a strength and weakness at the same time. Strength because the same algorithms could process a variety of different kinds of data, allowing us to leverage all the work gone through the development of those algorithms in different business contexts, weakness because since the algorithms lack any contextual understanding of the data, perennial computer science truth of garbage in, garbage out manifests itself unceremoniously here : ML models have to be fed "right" kind of data to draw out correct insights that explain the inner relationships in the data being processed. ML technology provides an impressive set of sophisticated data analysis and modelling algorithms that could find out very intricate relationships among the datasets they process. It provides not only very sophisticated, advanced data analysis and modeling methods but also the ability to use these methods in an automated, hence massively distributed and scalable ways. Its Achilles' heel however is its heavy dependence on the data it is being fed with. Best analytic methods would be useless, as far as drawing out useful insights from them are concerned, if they are applied on the wrong kind of data. More seriously, the use of advanced analytical technology could give a false sense of confidence to their users over the analysis results those methods produce, making the whole undertaking not just useless but actually dangerous. We can address the fundamental weakness of ML technology by deploying its advanced, raw algorithmic processing capabilities in conjunction with the existing data analytics technology whereby contextual data relationships and key domain knowledge coming from existing BI estate (data mining efforts, data warehouses, enterprise data models, business rules, etc.) are used to feed ML analytics pipeline. This approach will combine superior algorithmic processing capabilities of the new ML technology with the enterprise knowledge accumulated through BI efforts and will allow companies build on their existing data analytics investments while transitioning to use incoming advanced technologies. This, I believe, is effectively a win-win situation and will be key to the success of any company involved in data analytics efforts.

Read More
none

Will We Be Able to Use AI to Prevent Further Pandemics?

Article | March 9, 2021

For many, 2021 has brought hope that they can cautiously start to prepare for a world after Covid. That includes living with the possibility of future pandemics, and starting to reflect on what has been learned from such a brutal shared experience. One of the areas that has come into its own during Covid has been artificial intelligence (AI), a technology that helped bring the pandemic under control, and allow life to continue through lockdowns and other disruptions. Plenty has been written about how AI has supported many aspects of life at work and home during Covid, from videoconferencing to online food ordering. But the role of AI in preventing Covid causing even more havoc is not necessarily as widely known. Perhaps even more importantly, little has been said about the role AI is likely to play in preparing for, responding to and even preventing future pandemics. From what we saw in 2020, AI will help prevent global outbreaks of new diseases in three ways: prediction, diagnosis and treatment. Prediction Predicting pandemics is all about tracking data that could be possible early signs that a new disease is spreading in a disturbing way. The kind of data we’re talking about includes public health information about symptoms presenting to hospitals and doctors around the world. There is already plenty of this captured in healthcare systems globally, and is consolidated into datasets such as the Johns Hopkins reports that many of us are familiar with from news briefings. Firms like Bluedot and Metabiota are part of a growing number of organisations which use AI to track both publicly available and private data and make relevant predictions about public health threats. Both of these received attention in 2020 by reporting the appearance of Covid before it had been officially acknowledged. Boston Children’s Hospital is an example of a healthcare institution doing something similar with their Healthmap resource. In addition to conventional healthcare data, AI is uniquely able to make use of informal data sources such as social media, news aggregators and discussion forums. This is because of AI techniques such as natural language processing and sentiment analysis. Firms such as Stratifyd use AI to do this in other business settings such as marketing, but also talk publicly about the use of their platform to predict and prevent pandemics. This is an example of so-called augmented intelligence, where AI is used to guide people to noteworthy data patterns, but stops short of deciding what it means, leaving that to human judgement. Another important part of preventing a pandemic is keeping track of the transmission of disease through populations and geographies. A significant issue in 2020 was difficulty tracing people who had come into contact with infection. There was some success using mobile phones for this, and AI was critical in generating useful knowledge from mobile phone data. The emphasis of Covid tracing apps in 2020 was keeping track of how the disease had already spread, but future developments are likely to be about predicting future spread patterns from such data. Prediction is a strength of AI, and the principles used to great effect in weather forecasting are similar to those used to model likely pandemic spread. Diagnosis To prevent future pandemics, it won’t be enough to predict when a disease is spreading rapidly. To make the most of this knowledge, it’s necessary to diagnose and treat cases. One of the greatest early challenges with Covid was the lack of speedy, reliable tests. For future pandemics, AI is likely to be used to create such tests more quickly than was the case in 2020. Creating a useful test involves modelling a disease’s response to different testing reagents, finding right balance between speed, convenience and accuracy. AI modelling simulates in a computer how individual cells respond to different stimuli, and could be used to perform virtual testing of many different types of test to accelerate how quickly the most promising ones reach laboratory and field trials. In 2020 there were also several novel uses of AI to diagnose Covid, but there were few national and global mechanisms to deploy these at scale. One example was the use of AI imaging, diagnosing Covid by analysing chest x-rays for features specific to Covid. This would have been especially valuable in places that didn’t have access to lab testing equipment. Another example was using AI to analyse the sound of coughs to identify unique characteristics of a Covid cough. AI research to systematically investigate innovative diagnosis techniques such as these should result in better planning for alternatives to laboratory testing. Faster and wider rollout of this kind of diagnosis would help control spread of a future disease during the critical period waiting for other tests to be developed or shared. This would be another contribution of AI to preventing a localised outbreak becoming a pandemic. Treatment Historically, vaccination has proven to be an effective tool for dealing with pandemics, and was the long term solution to Covid for most countries. AI was used to accelerate development of Covid vaccines, helping cut the development time from years or decades to months. In principle, the use of AI was similar to that described above for developing diagnostic tests. Different drug development teams used AI in different ways, but they all relied on mathematical modelling of how the Covid virus would respond to many forms of treatment at a microscopic level. Much of the vaccine research and modelling focused on the “spike” proteins that allow Covid to attack human cells and enter the body. These are also found in other viruses, and were already the subject of research before the 2020 pandemic. That research allowed scientists to quickly develop AI models to represent the spikes, and simulate the effects of different possible treatments. This was crucial in trialling thousands of possible treatments in computer models, pinpointing the most likely successes for further investigation. This kind of mathematical simulation using AI continued during drug development, and moved substantial amounts of work from the laboratory to the computer. This modelling also allowed the impact of Covid mutations on vaccines to be assessed quickly. It is why scientists were reasonably confident of developing variants of vaccines for new Covid mutations in days and weeks rather than months. As a result of the global effort to develop Covid vaccines, the body of data and knowledge about virus behaviour has grown substantially. This means it should be possible to understand new pathogens even more rapidly than Covid, potentially in hours or days rather than weeks. AI has also helped create new ways of approaching vaccine development, for example the use of pre-prepared generic vaccines designed to treat viruses from the same family as Covid. Modifying one of these to the specific features of a new virus is much faster than starting from scratch, and AI may even have already simulated exactly such a variation. AI has been involved in many parts of the fight against Covid, and we now have a much better idea than in 2020 of how to predict, diagnose and treat pandemics, especially similar viruses to Covid. So we can be cautiously optimistic that vaccine development for any future Covid-like viruses will be possible before it becomes a pandemic. Perhaps a trickier question is how well we will be able to respond if the next pandemic is from a virus that is nothing like Covid. Was Rahman is an expert in the ethics of artificial intelligence, the CEO of AI Prescience and the author of AI and Machine Learning. See more at www.wasrahman.com

Read More

Spotlight

DB Best Technologies

DB Best is internationally known for comprehensive data-management services, database development and migration, as well as creation of highly successful web and mobile systems. Hundreds of customers rely on our 200 developers and architects for cost-effective strategies in migrating and modernizing their application assets…

Events