If Telling Stories with Data Is Important, then Why Aren’t We Good at It?

| September 2, 2015

article image
People who love data and analytics also have to be people who love telling stories and tell them well. That’s according to Tom Davenport, independent senior advisor at Deloitte Analytics. Davenport offers five reasons why data-based and analytics-based stories are so important to organizations, and four reasons why people and organizations don’t do it well, if they do it at all.

Spotlight

Envolve Consulting

Envolve Consulting is a growing consulting services provider delivering information solutions to enterprises. We specialize in Data Integration and Enterprise Business Intelligence . Our primary focus is helping clients understand how to navigate through the people, processes, and technologies that work together to provide valuable information for decision-making. Envolve's management team has over 50 years combined experience in delivering enterprise information and analytics solutions. Our reputation is built on solid client relationships and innovative solutions...

OTHER ARTICLES

WHY IT’S TIME FOR BUSINESS LEADERS AND DATA SCIENTISTS TO COME TOGETHER

Article | March 21, 2020

In today’s digital revolution, the realm of data is growing at an unprecedented rate and will continue to rise as businesses will leverage more smart technologies or devices. However, maintaining and processing these myriad amounts of data require massive computing power and the knowledge to use it. Moreover, companies these days are utilizing data to make data-driven decisions and this pursuit of data-driven decision-making can make them to seek out data science.

Read More

The case for hybrid artificial intelligence

Article | March 21, 2020

Deep learning, the main innovation that has renewed interest in artificial intelligence in the past years, has helped solve many critical problems in computer vision, natural language processing, and speech recognition. However, as the deep learning matures and moves from hype peak to its trough of disillusionment, it is becoming clear that it is missing some fundamental components.

Read More
THEORY AND STRATEGIES

Can you really trust Amazon Product Recommendation?

Article | March 21, 2020

Since the internet became popular, the way we purchase things has evolved from a simple process to a more complicated process. Unlike traditional shopping, it is not possible to experience the products first-hand when purchasing online. Not only this, but there are more options or variants in a single product than ever before, which makes it more challenging to decide. To not make a bad investment, the consumer has to rely heavily on the customer reviews posted by people who are using the product. However, sorting through relevant reviews at multiple eCommerce platforms of different products and then comparing them to choose can work too much. To provide a solution to this problem, Amazon has come up with sentiment analysis using product review data. Amazon performs sentiment analysis on product review data with Artificial Intelligence technology to develop the best suitable products for the customer. This technology enables Amazon to create products that are most likely to be ideal for the customer. A consumer wants to search for only relevant and useful reviews when deciding on a product. A rating system is an excellent way to determine the quality and efficiency of a product. However, it still cannot provide complete information about the product as ratings can be biased. Textual detailed reviews are necessary to improve the consumer experience and in helping them make informed choices. Consumer experience is a vital tool to understand the customer's behavior and increase sales. Amazon has come up with a unique way to make things easier for their customers. They do not promote products that look similar to the other customer's search history. Instead, they recommend products that are similar to the product a user is searching for. This way, they guide the customer using the correlation between the products. To understand this concept better, we must understand how Amazon's recommendation algorithm has upgraded with time. The history of Amazon's recommendation algorithm Before Amazon started a sentiment analysis of customer product reviews using machine learning, they used the same collaborative filtering to make recommendations. Collaborative filtering is the most used way to recommend products online. Earlier, people used user-based collaborative filtering, which was not suitable as there were many uncounted factors. Researchers at Amazon came up with a better way to recommend products that depend on the correlation between products instead of similarities between customers. In user-based collaborative filtering, a customer would be shown recommendations based on people's purchase history with similar search history. In item-to-item collaborative filtering, people are shown recommendations of similar products to their recent purchase history. For example, if a person bought a mobile phone, he will be shown hints of that phone's accessories. Amazon's Personalization team found that using purchase history at a product level can provide better recommendations. This way of filtering also offered a better computational advantage. User-based collaborative filtering requires analyzing several users that have similar shopping history. This process is time-consuming as there are several demographic factors to consider, such as location, gender, age, etc. Also, a customer's shopping history can change in a day. To keep the data relevant, you would have to update the index storing the shopping history daily. However, item-to-item collaborative filtering is easy to maintain as only a tiny subset of the website's customers purchase a specific product. Computing a list of individuals who bought a particular item is much easier than analyzing all the site's customers for similar shopping history. However, there is a proper science between calculating the relatedness of a product. You cannot merely count the number of times a person bought two items together, as that would not make accurate recommendations. Amazon research uses a relatedness metric to come up with recommendations. If a person purchased an item X, then the item Y will only be related to the person if purchasers of item X are more likely to buy item Y. If users who purchased the item X are more likely to purchase the item Y, then only it is considered to be an accurate recommendation. Conclusion In order to provide a good recommendation to a customer, you must show products that have a higher chance of being relevant. There are countless products on Amazon's marketplace, and the customer will not go through several of them to figure out the best one. Eventually, the customer will become frustrated with thousands of options and choose to try a different platform. So Amazon has to develop a unique and efficient way to recommend the products that work better than its competition. User-based collaborative filtering was working fine until the competition increased. As the product listing has increased in the marketplace, you cannot merely rely on previous working algorithms. There are more filters and factors to consider than there were before. Item-to-item collaborative filtering is much more efficient as it automatically filters out products that are likely to be purchased. This limits the factors that require analysis to provide useful recommendations. Amazon has grown into the biggest marketplace in the industry as customers trust and rely on its service. They frequently make changes to fit the recent trends and provide the best customer experience possible.

Read More

Splunk Big Data Big Opportunity

Article | March 21, 2020

Splunk extracts insights from big data. It is growing rapidly, it has a large total addressable market, and it has tremendous momentum from its exposure to industry megatrends (i.e. the cloud, big data, the "internet of things," and security). Further, its strategy of continuous innovation is being validated as the company wins very large deals. Investors should not be distracted by a temporary slowdown in revenue growth, as the company has wisely transitioned to a subscription model. This article reviews the business, its strategy, valuation the sell-off is overdone and risks. We conclude with our thoughts on investing.

Read More

Spotlight

Envolve Consulting

Envolve Consulting is a growing consulting services provider delivering information solutions to enterprises. We specialize in Data Integration and Enterprise Business Intelligence . Our primary focus is helping clients understand how to navigate through the people, processes, and technologies that work together to provide valuable information for decision-making. Envolve's management team has over 50 years combined experience in delivering enterprise information and analytics solutions. Our reputation is built on solid client relationships and innovative solutions...

Events