Implementing MySQL and Hadoop for Big Data

| June 14, 2016

article image
In this webinar, Percona discusses how to implement a successful big data strategy with Apache Hadoop and MySQL…

Spotlight

Inteliment

Founded in 2004, Inteliment helps some of the most forward-thinking enterprises worldwide derive maximum business impact through their Data. Inteliment is recognized as a leading provider of Data Driven Analytical Solutions & Services in Visual & Predictive Analytics, Data Science, IoT, Mobility & Artificial Intelligence areas. We strive for the success of our customers through Innovation, Technology and Partnerships.

OTHER ARTICLES

7 Data Storage Trends You Cannot Miss in a Data Center

Article | July 23, 2020

Contents: 1 Introduction 2 Top Data Storage Trends That Simplify Data Management 2.1 AI Storage Continues to be The Chief 2.2 Price Markdown in Flash Storage 2.3 Hybrid Multi Cloud for The Win 2.4 Increased Significance of Software-Defined Storage 2.5 Non-Volatile Memory Express (NVMe) Beats Data Center Fabrics 2.6 Acceleration of Storage Class Memory 2.7 Hyperconverged Storage – A Push to Edge Computing 3 The Future of Data Storage 1. Introduction There’s more to data than just to store it. Organizations not only have the responsibility of dealing with a plethora of data, but are also anticipated of safeguarding it. One of the primary alternatives that enterprises are indulging in to keep up with the continuous data expansion is data storage entities and applications. A recent study conducted by Statista revealed that worldwide spending on data storage units is expected to exceed 78 billion U.S. dollars by 2021. Going by these storage stats, it can be certainly said that data is going to be amplified at a much faster rate, and companies do not have a choice but to be geared up for a data boom and still be relevant. When it comes to data management/storage, information technology has risen to all its glory with concepts like machine learning. While the idea of such profound approaches is thrilling, the real question boils down to whether organizations are ready as well as equipped enough to handle them. The answer to this might be NO. But, can companies make changes and still thrive? Most definitely, YES! To make this concept more understandable, here is a list of changes/trends that companies should adopt to make data storage a lot more easy and secure. 2. Top data storage trends that simplify data management Data corruption is one big issue that most companies face. The complications that unfold further because of the corruption of data are even more complicated to resolve. To fix this and other such data storage problems, companies have come up with trends that are resilient and flexible. These trends have the capability of making history in the world of technology, so, you better gear up to learn and later adapt to them. 2.1 AI storage continues to be the chief The speed with which AI hit the IT world just doesn’t seem to slow down even after all these years. We say this because, amongst all other concepts that were and are constantly being introduced, artificial intelligence is one applied science that has made the most amount of innovations. To further add to this, AI is now making enterprise data storage process easier with its various subsets like machine learning and deep learning. This technology is helping companies in accumulating multiple layers of data in a more assorted format. It is automating IT storages including data migrating, archiving, protecting, etc. With AI, companies will be able to control data storage across multiple locations and storage platforms. 2.2 Price markdown in Flash storage As per a report by Markets and Markets, the overall All-Flash Array Market was valued at USD 5.9 billion in 2018 and is expected to reach USD 17.8 billion by 2023, at a CAGR of 24.53% during this period. This growth only states that the need for all-flash storage is only going to broaden. Flash storage has always been a choice that most companies stayed away from mainly because of the price. But with this new trend of adopting flexible data storage ways coming in, flash storage has been offered at a much-depreciated price. The drop in the cost of this storage technology will finally enable businesses of all sizes to invest in this high-performance solution. READ MORE: HOW BUSINESS ANALYTICS ACCELERATES YOUR BUSINESS GROWTH 2.3 Hybrid multi cloud for the win With data growing every minute, just a “cloud” strategy will not be enough. In this wave of data storage services, hybrid multi-cloud is one concept that is helping manage off-premises data. With this growing concept, IT authorities will be able to collect, segregate and store, on-premises, and off-premises data in a much-sophisticated manner. This will enable in centrally managing while reducing the effort of data storage by automating policy-based data placement across a hybrid of multi-cloud and storage types. 2.4 Increased significance of software-defined storage More the data, less reliability on hardware devices – this is the growing attitude of most companies. This fear certainly has the possibility of becoming a reality. Hence, an addition to the cybersecurity strategy that companies can make is adopting software-defined storage. This approach of data storage disconnects the underlying physical storage hardware. It is programmed in a way that can function on policy-based management of resources, automated provision, and computerized storage capacity reassignment. Due to the automated function, scaling up and down of data is also faster. Some of the biggest advantages of this trend will be the governance, data protection, and security it will provide to the entire loop. 2.5 Non-Volatile Memory Express (NVMe) beats data center fabrics NVMe – as ornate as the name sounds, is a concept that is freshly introduced with the aim of making data storage simpler. Non-Volatile Memory Express is a concept that enables accessibility of high-speed storage media. It is a protocol that is showing great results in a short amount of time of its inception. NVMe not only increases the performance value of existing applications, but also enables new applications to real-time workload processing. This feature of high performance and low latency is surely a highlight of the concept. All in all, this entire trend seems to have a lot of potential that are yet to be explored. READ MORE: HOW TO MAXIMIZE VALUE FROM DATA COLLECTED FOR BUSINESSES SUCCESS 2.6 Acceleration of storage class memory Storage class memory is a perfect combination of flash storage and NVMe. This is because it perfectly fills in the gap between server storage and external storage. As data protection is one of the major concerns of enterprises, this upcoming trend, does not only protect data but also continually stores and improves it for easier segregation. A clear advantage that storage class memory has over flash and NVMe storages is that it provides memory-like byte-addressable access to data thus reducing piling up of irrelevant data. Another benefit of this trend is that it indulges in deeper integration of data for ensuring high performance and top-level data security. 2.7 Hyperconverged storage – a push to edge computing The increased demand for hyper converged storage is a result of the growth of hybrid cloud and software-defined infrastructure. Besides these technologies, its suitability for retail settings and remote offices is add on to its already existing set of features. It’s the capability of capturing data from a distance also enables cost-effectiveness and scales down the need to store everything on a public cloud. Hyper converged storage if used in its true essence can simplify IT operations and data storage for enterprises of all sizes. 3. The future of data storage According to the Internet World Stats, more than 4.5 billion internet users around the world relentlessly create an astronomical amount of data. This translates to propel companies into discovering methods or applications that help them store this data safe from harmful ransomware attacks and still use it productively for their advantage. One of the prime changes that can be estimated about the future of data storage is that companies will have to adapt to the rapid changes, and mould their process to enable quick and seamless storage of data. Another enhancement would be that IT managers and responsible authorities would have to be updated and proactive at all times to know what data storage has been newly introduced, and how it can be used for the company’s advantage. Here’s a thing, amongst all the research that enterprises are conducting, not all data storage technologies will end up becoming a hit, and will fulfil the specification of high-speed storage. But, looking at all the efforts that researchers are taking, we don’t think they are going to stop any sooner and neither is the augmentation of data!

Read More

Machine Learning vs. Deep Learning. Which Does Your Business Need?

Article | February 17, 2020

In recent years, artificial intelligence research and applications have accelerated at a rapid speed. Simply saying your organization will incorporate AI isn’t as specific as it once was. There are diverse implementation options for AI, Machine Learning, and Deep Learning, and within each of them, a series of different algorithms you can leverage to improve operations and establish a competitive edge. Algorithms are utilized across almost every industry. For example, to power the recommendation engines in all media platforms, the chatbots that support customer service efforts at scale, and the self-driving vehicles being tested by the world’s largest automotive and technology companies. Because of how diverse AI has become and the many ways in which it works with data, companies must carefully evaluate what will work best for them.

Read More

Saurav Singla, the machine learning guru, empowering society

Article | December 10, 2020

Saurav Singla is a Senior Data Scientist, a Machine Learning Expert, an Author, a Technical Writer, a Data Science Course Creator and Instructor, a Mentor, a Speaker. While Media 7 has followed Saurav Singla’s story closely, this chat with Saurav was about analytics, his journey as a data scientist, and what he brings to the table with his 15 years of extensive statistical modeling, machine learning, natural language processing, deep learning, and data analytics across Consumer Durable, Retail, Finance, Energy, Human Resource and Healthcare sectors. He has grown multiple businesses in the past and is still a researcher at heart. In the past, Analytics and Predictive Modeling is predominant in few industries but in current times becoming an eminent part of emerging fields such as health, human resource management, pharma, IoT, and other smart solutions as well. Saurav had worked in data science since 2003. Over the years, he realized that all the people they had hired — whether they are from business or engineering backgrounds — needed extensive training to be able to perform analytics on real-world business datasets. He got an opportunity to move to Australia in the year 2003. He joined a retail company Harvey Norman in Australia, working out of their Melbourne office for four years. After moving back to India, in 2008, he joined one of the verticals of Siemens — one of the few companies in India then using analytics services in-house for eight years. He is a very passionate believer that the use of data and analytics will dramatically change not only corporations but also our societies. Building and expanding the application of analytics for supply chain, logistics, sales, marketing, finance at Siemens was a very fulfilling and enjoyable experience for him. Siemens was a tremendously rewarding and enjoyable experience for him. He grew the team from zero to fifteen while he was the data scientist leader. He believes those eight years taught him how to think big, scale organizations using data science. He has demonstrated success in developing and seamlessly executing plans in complex organizational structures. He has also been recognized for maximizing performance by implementing appropriate project management tools through analysis of details to ensure quality control and understanding of emerging technology. In the year 2016, he started getting a serious inner push to start thinking about joining a consulting and shifted to a company based out in Delhi NCR. During his ten-month path with them, he improved the way clients and businesses implement and exploit machine learning in their consumer commitments. As part of that vision, he developed class-defining applications that eliminate tension technologies, processes, and humans. Another main aspect of his plan was to ensure that it was affected in very fast agile cycles. Towards that he was actively innovating on operating and engagement models. In the year 2017, he moved to London and joined a digital technology company, and assisted in building artificial intelligence and machine learning products for their clients. He aimed to solve problems and transform the costs using technology and machine learning. He was associated with them for 2 years. At the beginning of the year 2018, he joined Mindrops. He developed advanced machine learning technologies and processes to solve client problems. Mentored the Data Science function and guide them in the development of the solution. He built robust clients Data Science capabilities which can be scalable across multiple business use cases. Outside work, Saurav associated with Mentoring Club and Revive. He volunteers in his spare time for helping, coaching, and mentoring young people in taking up careers in the data science domain, data practitioners to build high-performing teams and grow the industry. He assists data science enthusiasts to stay motivated and guide them along their career path. He helps fill the knowledge gap and help aspirants understand the core of the industry. He helps aspirants analyze their progress and help them upskill accordingly. He also helps them connect with potential job opportunities with their industry-leading network. Additionally, in the year 2018, he joined as a mentor in the Transaction Behavioral Intelligence company that accelerates business growth for banks with the use of Artificial Intelligence and Machine Learning enabled products. He is guiding their machine learning engineers with their projects. He is enhancing the capabilities of their AI-driven recommendation engine product. Saurav is teaching the learners to grasp data science knowledge more engaging way by providing courses on the Udemy marketplace. He has created two courses on Udemy, with over twenty thousand students enrolled in it. He regularly speaks at meetups on data science topics and writes articles on data science topics in major publications such as AI Time Journal, Towards Data Science, Data Science Central, Kdnuggets, Data-Driven Investor, HackerNoon, and Infotech Report. He actively contributes academic research papers in machine learning, deep learning, natural language processing, statistics and artificial intelligence. His book on Machine Learning for Finance was published by BPB Publications which is Asia's largest publisher of Computer and IT Books. This is possibly one of the biggest milestones of his career. Saurav turned his passion to make knowledge available for society. Saurav believes sharing knowledge is cool, and he wishes everyone should have that passion for knowledge sharing. That would be his success.

Read More

3 steps to build a data fabric to integrate all your data tools

Article | May 17, 2021

One approach for better data utilization is the data fabric, a data management approach that arranges data in a single "fabric" that spans multiple systems and endpoints. The goal of the fabric is to link all data so it can easily be accessed. "DataOps and data fabric are two different but related things," said Ed Thompson, CTO at Matillion, which provides a cloud data integration platform. "DataOps is about taking practices which are common in modern software development and applying them to data projects. Data fabric is about the type of data landscape that you create and how the tools that you use work together."

Read More

Spotlight

Inteliment

Founded in 2004, Inteliment helps some of the most forward-thinking enterprises worldwide derive maximum business impact through their Data. Inteliment is recognized as a leading provider of Data Driven Analytical Solutions & Services in Visual & Predictive Analytics, Data Science, IoT, Mobility & Artificial Intelligence areas. We strive for the success of our customers through Innovation, Technology and Partnerships.

Events