Keeping Data Virtualization Up-to-Date with the Hadoop Ecosystem

| May 19, 2016

article image
The Hadoop ecosystem is here to stay, for long. Having been one of the most important big data enablers in the recent years and in position to continue being so in the years to come, Hadoop is nowadays one of the key target data sources for general data integration systems such as data virtualization platforms. But Hadoop isn’t just a database or a piece of software. It is a complex ecosystem of highly heterogeneous software living in a distributed data environment – almost an entire Operating System by itself. So, integrating Hadoop as a data source introduces a series of challenges that most other systems don’t; we can start by asking ourselves what does integrating Hadoop as a data source mean exactly…

Spotlight

SuperDataHub

SuperDataHub is a powerful Business Intelligence tool helping you uncover the trends and patterns hidden in your data. Construct detailed reports and make informed business decisions.

OTHER ARTICLES

7 Data Storage Trends You Cannot Miss in a Data Center

Article | July 23, 2020

Contents: 1 Introduction 2 Top Data Storage Trends That Simplify Data Management 2.1 AI Storage Continues to be The Chief 2.2 Price Markdown in Flash Storage 2.3 Hybrid Multi Cloud for The Win 2.4 Increased Significance of Software-Defined Storage 2.5 Non-Volatile Memory Express (NVMe) Beats Data Center Fabrics 2.6 Acceleration of Storage Class Memory 2.7 Hyperconverged Storage – A Push to Edge Computing 3 The Future of Data Storage 1. Introduction There’s more to data than just to store it. Organizations not only have the responsibility of dealing with a plethora of data, but are also anticipated of safeguarding it. One of the primary alternatives that enterprises are indulging in to keep up with the continuous data expansion is data storage entities and applications. A recent study conducted by Statista revealed that worldwide spending on data storage units is expected to exceed 78 billion U.S. dollars by 2021. Going by these storage stats, it can be certainly said that data is going to be amplified at a much faster rate, and companies do not have a choice but to be geared up for a data boom and still be relevant. When it comes to data management/storage, information technology has risen to all its glory with concepts like machine learning. While the idea of such profound approaches is thrilling, the real question boils down to whether organizations are ready as well as equipped enough to handle them. The answer to this might be NO. But, can companies make changes and still thrive? Most definitely, YES! To make this concept more understandable, here is a list of changes/trends that companies should adopt to make data storage a lot more easy and secure. 2. Top data storage trends that simplify data management Data corruption is one big issue that most companies face. The complications that unfold further because of the corruption of data are even more complicated to resolve. To fix this and other such data storage problems, companies have come up with trends that are resilient and flexible. These trends have the capability of making history in the world of technology, so, you better gear up to learn and later adapt to them. 2.1 AI storage continues to be the chief The speed with which AI hit the IT world just doesn’t seem to slow down even after all these years. We say this because, amongst all other concepts that were and are constantly being introduced, artificial intelligence is one applied science that has made the most amount of innovations. To further add to this, AI is now making enterprise data storage process easier with its various subsets like machine learning and deep learning. This technology is helping companies in accumulating multiple layers of data in a more assorted format. It is automating IT storages including data migrating, archiving, protecting, etc. With AI, companies will be able to control data storage across multiple locations and storage platforms. 2.2 Price markdown in Flash storage As per a report by Markets and Markets, the overall All-Flash Array Market was valued at USD 5.9 billion in 2018 and is expected to reach USD 17.8 billion by 2023, at a CAGR of 24.53% during this period. This growth only states that the need for all-flash storage is only going to broaden. Flash storage has always been a choice that most companies stayed away from mainly because of the price. But with this new trend of adopting flexible data storage ways coming in, flash storage has been offered at a much-depreciated price. The drop in the cost of this storage technology will finally enable businesses of all sizes to invest in this high-performance solution. READ MORE: HOW BUSINESS ANALYTICS ACCELERATES YOUR BUSINESS GROWTH 2.3 Hybrid multi cloud for the win With data growing every minute, just a “cloud” strategy will not be enough. In this wave of data storage services, hybrid multi-cloud is one concept that is helping manage off-premises data. With this growing concept, IT authorities will be able to collect, segregate and store, on-premises, and off-premises data in a much-sophisticated manner. This will enable in centrally managing while reducing the effort of data storage by automating policy-based data placement across a hybrid of multi-cloud and storage types. 2.4 Increased significance of software-defined storage More the data, less reliability on hardware devices – this is the growing attitude of most companies. This fear certainly has the possibility of becoming a reality. Hence, an addition to the cybersecurity strategy that companies can make is adopting software-defined storage. This approach of data storage disconnects the underlying physical storage hardware. It is programmed in a way that can function on policy-based management of resources, automated provision, and computerized storage capacity reassignment. Due to the automated function, scaling up and down of data is also faster. Some of the biggest advantages of this trend will be the governance, data protection, and security it will provide to the entire loop. 2.5 Non-Volatile Memory Express (NVMe) beats data center fabrics NVMe – as ornate as the name sounds, is a concept that is freshly introduced with the aim of making data storage simpler. Non-Volatile Memory Express is a concept that enables accessibility of high-speed storage media. It is a protocol that is showing great results in a short amount of time of its inception. NVMe not only increases the performance value of existing applications, but also enables new applications to real-time workload processing. This feature of high performance and low latency is surely a highlight of the concept. All in all, this entire trend seems to have a lot of potential that are yet to be explored. READ MORE: HOW TO MAXIMIZE VALUE FROM DATA COLLECTED FOR BUSINESSES SUCCESS 2.6 Acceleration of storage class memory Storage class memory is a perfect combination of flash storage and NVMe. This is because it perfectly fills in the gap between server storage and external storage. As data protection is one of the major concerns of enterprises, this upcoming trend, does not only protect data but also continually stores and improves it for easier segregation. A clear advantage that storage class memory has over flash and NVMe storages is that it provides memory-like byte-addressable access to data thus reducing piling up of irrelevant data. Another benefit of this trend is that it indulges in deeper integration of data for ensuring high performance and top-level data security. 2.7 Hyperconverged storage – a push to edge computing The increased demand for hyper converged storage is a result of the growth of hybrid cloud and software-defined infrastructure. Besides these technologies, its suitability for retail settings and remote offices is add on to its already existing set of features. It’s the capability of capturing data from a distance also enables cost-effectiveness and scales down the need to store everything on a public cloud. Hyper converged storage if used in its true essence can simplify IT operations and data storage for enterprises of all sizes. 3. The future of data storage According to the Internet World Stats, more than 4.5 billion internet users around the world relentlessly create an astronomical amount of data. This translates to propel companies into discovering methods or applications that help them store this data safe from harmful ransomware attacks and still use it productively for their advantage. One of the prime changes that can be estimated about the future of data storage is that companies will have to adapt to the rapid changes, and mould their process to enable quick and seamless storage of data. Another enhancement would be that IT managers and responsible authorities would have to be updated and proactive at all times to know what data storage has been newly introduced, and how it can be used for the company’s advantage. Here’s a thing, amongst all the research that enterprises are conducting, not all data storage technologies will end up becoming a hit, and will fulfil the specification of high-speed storage. But, looking at all the efforts that researchers are taking, we don’t think they are going to stop any sooner and neither is the augmentation of data!

Read More

DATA CENTRE MARKET EXPECTED TO ACCELERATE OWING TO INCREASING CLOUD DEMAND

Article | February 28, 2020

An enormous amount of data is generated daily through various medium and amid this their storage becomes a great concern for organizations. Currently, two significant styles of data storage capacities are available Cloud and Data Centre.The main difference between the cloud vs. data centre is that a data centre refers to on-premise hardware while the cloud refers to off-premise computing. The cloud stores the data in the public cloud, while a data centre stores the data on company’s own hardware. Many businesses are turning to the cloud. In fact, Gartner, Inc. predicted that the worldwide public cloud services market has grown to 17.5 percent in 2019 to total US$214.3 billion. For many businesses, utilizing the cloud makes sense. While, in many other cases, having an in-house data centre is a better option. Often, maintaining an in-house data centre is expensive, but it can be beneficial to be in total control of computing environment.

Read More

Here’s How Analytics are Transforming the Marketing Industry

Article | July 13, 2021

When it comes to marketing today, big data analytics has become a powerful being. The raw material marketers need to make sense of the information they are presented with so they can do their jobs with accuracy and excellence. Big data is what empowers marketers to understand their customers based on any online action they take. Thanks to the boom of big data, marketers have learned more about new marketing trends and preferences, and behaviors of the consumer. For example, marketers know what their customers are streaming to what groceries they are ordering, thanks to big data. Data is readily available in abundance due to digital technology. Data is created through mobile phones, social media, digital ads, weblogs, electronic devices, and sensors attached through the internet of things (IoT). Data analytics helps organizations discover newer markets, learn how new customers interact with online ads, and draw conclusions and effects of new strategies. Newer sophisticated marketing analytics software and analytics tools are now being used to determine consumers’ buying patterns and key influencers in decision-making and validate data marketing approaches that yield the best results. With the integration of product management with data science, real-time data capture, and analytics, big data analytics is helping companies increase sales and improve the customer experience. In this article, we will examine how big data analytics are transforming the marketing industry. Personalized Marketing Personalized Marketing has taken an essential place in direct marketing to the consumers. Greeting consumers with their first name whenever they visit the website, sending them promotional emails of their favorite products, or notifying them with personalized recipes based on their grocery shopping are some of the examples of data-driven marketing. When marketers collect critical data marketing pieces about customers at different marketing touchpoints such as their interests, their name, what they like to listen to, what they order most, what they’d like to hear about, and who they want to hear from, this enables marketers to plan their campaigns strategically. Marketers aim for churn prevention and onboarding new customers. With customer’s marketing touchpoints, these insights can be used to improve acquisition rates, drive brand loyalty, increase revenue per customer, and improve the effectiveness of products and services. With these data marketing touchpoints, marketers can build an ideal customer profile. Furthermore, these customer profiles can help them strategize and execute personalized campaigns accordingly. Predictive Analytics Customer behavior can be traced by historical data, which is the best way to predict how customers would behave in the future. It allows companies to correctly predict which customers are interested in their products at the right time and place. Predictive analytics applies data mining, statistical techniques, machine learning, and artificial intelligence for data analysis and predict the customer’s future behavior and activities. Take an example of an online grocery store. If a customer tends to buy healthy and sugar-free snacks from the store now, they will keep buying it in the future too. This predictable behavior from the customer makes it easy for brands to capitalize on that and has been made easy by analytics tools. They can automate their sales and target the said customer. What they would be doing gives the customer chances to make “repeat purchases” based on their predictive behavior. Marketers can also suggest customers purchase products related to those repeat purchases to get them on board with new products. Customer Segmentation Customer segmentation means dividing your customers into strata to identify a specific pattern. For example, customers from a particular city may buy your products more than others, or customers from a certain age demographic prefer some products more than other age demographics. Specific marketing analytics software can help you segment your audience. For example, you can gather data like specific interests, how many times they have visited a place, unique preferences, and demographics such as age, gender, work, and home location. These insights are a golden opportunity for marketers to create bold campaigns optimizing their return on investment. They can cluster customers into specific groups and target these segments with highly relevant data marketing campaigns. The main goal of customer segmentation is to identify any interesting information that can help them increase revenue and meet their goals. Effective customer segmentation can help marketers with: • Identifying most profitable and least profitable customers • Building loyal relationships • Predicting customer patterns • Pricing products accordingly • Developing products based on their interests Businesses continue to invest in collecting high-quality data for perfect customer segmentation, which results in successful efforts. Optimized Ad Campaigns Customers’ social media data like Facebook, LinkedIn, and Twitter makes it easier for marketers to create customized ad campaigns on a larger scale. This means that they can create specific ad campaigns for particular groups and successfully execute an ad campaign. Big data also makes it easier for marketers to run ‘remarketing’ campaigns. Remarketing campaigns ads follow your customers online, wherever they browse, once they have visited your website. Execution of an online ad campaign makes all the difference in its success. Chasing customers with paid ads can work as an effective strategy if executed well. According to the rule 7, prospective customers need to be exposed to an ad minimum of seven times before they make any move on it. When creating online ad campaigns, do keep one thing in mind. Your customers should not feel as if they are being stalked when you make any remarketing campaigns. Space out your ads and their exposure, so they appear naturally rather than coming on as pushy. Consumer Impact Advancements in data science have vastly impacted consumers. Every move they make online is saved and measured. In addition, websites now use cookies to store consumer data, so whenever these consumers visit these websites, product lists based on their shopping habits pop up on the site. Search engines and social media data enhance this. This data can be used to analyze their behavior patterns and market to them accordingly. The information gained from search engines and social media can be used to influence consumers into staying loyal and help their businesses benefit from the same. These implications can be frightening, like seeing personalized ads crop up on their Facebook page or search engine. However, when consumer data is so openly available to marketers, they need to use it wisely and safeguard it from falling into the wrong hands. Fortunately, businesses are taking note and making sure that this information remains secure. Conclusion The future of marketing because of big data and analytics seems bright and optimistic. Businesses are collecting high-quality data in real-time and analyzing it with the help of machine learning and AI; the marketing world seems to be up for massive changes. Analytics are transforming marketing industry to a different level. And with sophisticated marketers behind the wheel, the sky is the only limit. Frequently Asked Questions Why is marketing analytics so important these days? Marketing analytics helps us see how everything plays off each other, and decide how we might want to invest moving forward. Re-prioritizing how you spend your time, how you build out your team, and the resources you invest in channels and efforts are critical steps to achieving marketing team success. What is the use of marketing analytics? Marketing analytics is used to measure how well your marketing efforts are performing and to determine what can be done differently to get better results across marketing channels. Which companies use marketing analytics? Marketing analytics enables you to improve your overall marketing program performance by identifying channel deficiencies, adjusting strategies and tactics as needed, optimizing processes, etc. Companies like Netflix, Sephora, EasyJet, and Spotify use marketing analytics to improve their markeitng performance as well. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is marketing analytics so important these days?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics helps us see how everything plays off each other, and decide how we might want to invest moving forward. Re-prioritizing how you spend your time, how you build out your team and the resources you invest in channels and efforts are critical steps to achieving marketing team success" } },{ "@type": "Question", "name": "What is the use of marketing analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics is used to measure how well your marketing efforts are performing and to determine what can be done differently to get better results across marketing channels." } },{ "@type": "Question", "name": "Which companies use marketing analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics enables you to improve your overall marketing program performance by identifying channel deficiencies, adjusting strategies and tactics as needed, optimizing processes, etc. Companies like Netflix, Sephora, EasyJet, and Spotify use marketing analytics to improve their markeitng performance as well." } }] }

Read More

DRIVING DIGITAL TRANSFORMATION WITH RPA, ML AND WORKFLOW AUTOMATION

Article | February 11, 2020

The latest pace of advancements in technology paves way for businesses to pay attention to digital strategy in order to drive effective digital transformation. Digital strategy focuses on leveraging technology to enhance business performance, specifying the direction where organizations can create new competitive advantages with it. Despite a lot of buzz around its advancement, digital transformation initiatives in most businesses are still in its infancy.Organizations that have successfully implemented and are effectively navigating their way towards digital transformation have seen that deploying a low-code workflow automation platform makes them more efficient.

Read More

Spotlight

SuperDataHub

SuperDataHub is a powerful Business Intelligence tool helping you uncover the trends and patterns hidden in your data. Construct detailed reports and make informed business decisions.

Events