Mannequin Challenge: Zoomdata edition

| November 15, 2016

article image
We're really good at two things:1. Making the fastest visualization analytics platform for big data.2. Staying really still. Come work with us: http://www.zoomdata.com/careers

Spotlight

Wide Vision Technologies

Wide Vision Technologies, A web & mobile application development company focused on changing the way our clients think about the apps. Our applications are business-driven, user-focused, and highly innovative. We offer a proven and radically different way of designing & developing applications. Learn why organizations around the globe have started doing things the Epicenter way. We specialize Full Stack development, including AngularJS, NodeJs, in Custom Web Application Development, iOS/Android Apps Development, Open Source PHP Joomla, WordPress, Magento, Development, Responsive Web & Graphics Design services across the globe.

OTHER ARTICLES

How data analytics and IoT are driving insurtech growth

Article | March 17, 2020

Technology is driving change in every industry and region around the world and insurance is no different. The financial services sector is a good example of how digitally disruptive technologies such as artificial intelligence, Big Data and mobile-first banking experiences have paved the way for innovative fintechs.The insurance industry is no different. According to a report by Accenture titled The Rise of Insurtech: How Young Startups and a Mature Industry Can Bring Out the Best in One Another, for example, there is a growing recognition that the insurance industry will ultimately see the greatest benefit and the highest levels of disruption - from this global upsurge in innovation”.

Read More

Understanding Big Data and Artificial Intelligence

Article | June 18, 2021

Data is an important asset. Data leads to innovation and organizations tend to compete for leading these innovations on a global scale. Today, every business requires data and insights to stay relevant in the market. Big Data has a huge impact on the way organizations conduct their businesses. Big Data is used in different enterprises like travel, healthcare, manufacturing, governments, and more. If they need to determine their audience, understand what clients want, forecast the needs of the customers and the clients, AI and big data analysis is vital to every decision-making scenario. When companies process the collected data accurately, they get the desired results, which leads them to their desired goals. The term Big Data has been around since the 1990s. By the time we could fully comprehend it, Big Data had already amassed a huge amount of stored data. If this data is analyzed properly, it would reveal valuable industry insights into the industry to which the data belonged. IT professionals and computer scientists realized that going through all of the data and analyzing it for the purpose was too big of a task for humans to undertake. When artificial intelligence (AI) algorithm came into the picture, it accomplished analyzing the accumulated data and deriving insights. The use of AI in Big Data is fundamental to get desired results for organizations. According to Northeastern University, the amount of data in the world was 4.4 zettabytes in 2013. By of 2020, the data rose to 44 zettabytes. When there is this amount of data produced globally, this information is invaluable to the enterprises and now can leverage AI algorithms to process it. Because of this, the companies can understand and influence customer behavior. By 2018, over 50% of countries had adopted Big Data. Let us understand what Big Data, convergence of big data and AI, and impact of AI on big data analytics. Understanding Big Data In simple words, Big Data is a term that comprises every tool and process that helps people use and manage vast sets of data. According to Gartner, Big Data is a “high-volume and/or high-variety information assets that demand cost-effective, innovative forms of information processing to enable enhanced insight, decision-making, and process automation.” The concept of Big Data was created to capture trends, preferences, and user behavior in one place called the data lake. Big Data in enterprises can help them analyze and configure their customers’ motivations and come up with new ideas for the creation of new offerings. Big Data studies different methods of extracting, analyzing, or dealing with data sets that are too complicated for traditional data processing systems. To analyze a large amount of data requires a system designed to stretch its extraction and analysis capability. Data is everywhere. This stockpile of data can give us insights and business analytics to the industry belonging to the data set. Therefore, the AI algorithms are written to benefit from large and complex data. Importance of Big Data Data is an integral part of understanding customer demographics and their motivations. When customers interact with technology in active or passive manner, these actions create a new set of data. What contributes to this data creation is what they carry with them every day - their smartphones. Their cameras, credit cards, purchased products all contribute to their growing data profile. A correctly done analysis can tell a lot about their behavior patterns, personality, and events in the customer’s life. Companies can use this information to rethink their strategies, improve on their product, and create targeted marketing campaigns, which would ultimately lead them to their target customer. Industry experts, for years and years, have discussed Big Data and its impact on businesses. Only in recent years, however, has it become possible to calculate that impact. Algorithms and software can now analyze large datasets quickly and efficiently.The forty-four zettabyte of data will only quadruple in the coming years. This collection and analysis of the data will help companies get the AI insights that will aid them in generating profits and be future-ready. Organizations have been using Big Data for a long time. Here’s how those organizations are using Big Data to drive success: Answering customer questions Using big data and analytics, companies can learn the following things: • What do customers want? • Where are they missing out on? • Who are their best and loyal customers? • Why people choose different products? Every day, as organizations gather more information, they can get more insights into sales and marketing. Once they get this data, they can optimize their campaigns to suit the customer’s needs. Learning from their online habits and with correct analysis, companies can send personalized promotional emails. These emails may prompt this target audience to convert into full-time customers. Making confident decisions As companies grow, they all need to make complex decisions. With in-depth analysis of marketplace knowledge, industry, and customers, Big Data can help you make confident choices. Big Data gives you a complete overview of everything you need to know. With the help of this, you can launch your marketing campaign or launch a new product in the market, or make a focused decision to generate the highest ROI. Once you add machine learning and AI to the mix, your Big Data collections can form a neural network to help your AI suggest useful company changes. Optimizing and Understanding Business Processes Cloud computing and machine learning help you to stay ahead by identifying opportunities in your company’s practices. Big Data analytics can tell you if your email strategy is working even when your social media marketing isn’t gaining you any following. You can also check which parts of your company culture have the right impact and result in the desired turnover. The existing evidence can help you make quick decisions and ensure you spend more of your budget on things that help your business grow. Convergence of Big Data and AI Big Data and Artificial Intelligence have a synergistic relationship. Data powers AI. The constantly evolving data sets or Big Data makes it possible for machine learning applications to learn and acquire new skills. This is what they were built to do. Big Data’s role in AI is supplying algorithms with all the essential information for developing and improving features, pattern recognition capabilities. AI and machine learning use data that has been cleansed of duplicate and unnecessary data. This clean and high-quality big data is then utilized to create and train intelligent AI algorithms, neural networks, and predictive models. AI applications rarely stop working and learning. Once the “initial training” is done (initial training is preparing already collected data), they adjust their work as and when the data changes. This makes it necessary for data to be constantly collected. When it comes to businesses using this technology, AI helps them use Big Data for analytics by making advanced tools accessible and obtainable to help users gain insights that would otherwise have been hidden in the huge amount of data. Once firms and businesses gain a hold on using AI and Big Data, they can provide decision-makers with a clear understanding of factors that affect their businesses. Impact of AI on Big Data Analytics AI supports users in the Big Data cycle, including aggregation, storage, and retrieval of diverse data types from different data sources. This includes data management, context management, decision management, action management, and risk management. Big Data can help alert problems and help find new solutions and get ideas about any new prospects. With the amount of information stream that comes in, it can be difficult to determine what is important and what isn’t. This is where AI and machine learning come in. It can help identify unusual patterns in the processes, help in the analysis, and suggest further steps to be taken. It can also learn how users interact with analytics and learn subtle differences in meanings or context-specific nuances to understand numeric data sources. AI can also caution users about anomalies, unforeseen data patterns, monitoring events, and threats from system logs or social networking data. Application of Big Data and Artificial Intelligence After establishing how AI and Big Data work together, let us look at how some applications are benefitting from their synergy: Banking and financial sectors The banking and financial sectors apply these to monitor financial marketing activities. These institutions also use AI to keep an eye on any illegal trading activities. Trading data analytics are obtained for high-frequency trading, and decision making based on trading, risk analysis, and predictive analysis. It is also used for fraud warning and detection, archival and analysis of audit trails, reporting enterprise credit, customer data transformation, etc. Healthcare AI has simplified health data prescriptions and health analysis, thus benefitting healthcare providers from the large data pool. Hospitals are using millions of collected data that allow doctors to use evidence-based medicine. Chronic diseases can be tracked faster by AI. Manufacturing and supply chain AI and Big Data in manufacturing, production management, supply chain management and analysis, and customer satisfaction techniques are flawless. The quality of products is thus much better with higher energy efficiency, reliable increase in levels, and profit increase. Governments Governments worldwide use AI applications like facial recognition, vehicle recognition for traffic management, population demographics, financial classifications, energy explorations, environmental conservation, criminal investigations, and more. Other sectors that use AI are mainly retail, entertainment, education, and more. Conclusion According to Gartner’s predictions, artificial intelligence will replace one in five workers by 2022. Firms and businesses can no longer afford to avoid using artificial intelligence and Big Data in their day-to-day. Investments in AI and Big Data analysis will be beneficial for everyone. Data sets will increase in the future, and with it, its application and investment will grow over time. Human relevance will continue to decrease as time goes by. AI enables machine learning to be the future of the development of business technologies. It will automate data analysis and find new insights that were previously impossible to imagine by processing data manually. With machine learning, AI, and Big Data, we can redraw the way we approach everything else. Frequently Asked Questions Why does big data affect artificial intelligence? Big Data and AI customize business processes and make better-suited decisions for individual needs and expectations. This improves its efficiency of processes and decisions. Data has the potential to give insights into a variety of predicted behaviors and incidents. Is AI or big data better? AI becomes better as it is fed more and more information. This information is gathered from Big Data which helps companies understand their customers better. On the other hand, Big Data is useless if there is no AI to analyze it. Humans are not capable of analyzing the data on a large scale. Is AI used in big data? When the gathered Big Data is to be analyzed, AI steps in to do the job. Big Data makes use of AI. What is the future of AI in big data? AI’s ability to work so well with data analytics is the primary reason why AI and Big Data now seem inseparable. AI machine learning and deep learning are learning from every data input and using those inputs to generate new rules for future business analytics. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why does big data affect artificial intelligence?", "acceptedAnswer": { "@type": "Answer", "text": "Big Data and AI customize business processes and make better-suited decisions for individual needs and expectations. This improves its efficiency of processes and decisions. Data has the potential to give insights into a variety of predicted behaviors and incidents." } },{ "@type": "Question", "name": "Is AI or big data better?", "acceptedAnswer": { "@type": "Answer", "text": "AI becomes better as it is fed more and more information. This information is gathered from Big Data which helps companies understand their customers better. On the other hand, Big Data is useless if there is no AI to analyze it. Humans are not capable of analyzing the data on a large scale." } },{ "@type": "Question", "name": "Is AI used in big data?", "acceptedAnswer": { "@type": "Answer", "text": "When the gathered Big Data is to be analyzed, AI steps in to do the job. Big Data makes use of AI." } },{ "@type": "Question", "name": "What is the future of AI in big data?", "acceptedAnswer": { "@type": "Answer", "text": "AI’s ability to work so well with data analytics is the primary reason why AI and Big Data now seem inseparable. AI machine learning and deep learning are learning from every data input and using those inputs to generate new rules for future business analytics." } }] }

Read More

7 Data Storage Trends You Cannot Miss in a Data Center

Article | July 23, 2020

Contents: 1 Introduction 2 Top Data Storage Trends That Simplify Data Management 2.1 AI Storage Continues to be The Chief 2.2 Price Markdown in Flash Storage 2.3 Hybrid Multi Cloud for The Win 2.4 Increased Significance of Software-Defined Storage 2.5 Non-Volatile Memory Express (NVMe) Beats Data Center Fabrics 2.6 Acceleration of Storage Class Memory 2.7 Hyperconverged Storage – A Push to Edge Computing 3 The Future of Data Storage 1. Introduction There’s more to data than just to store it. Organizations not only have the responsibility of dealing with a plethora of data, but are also anticipated of safeguarding it. One of the primary alternatives that enterprises are indulging in to keep up with the continuous data expansion is data storage entities and applications. A recent study conducted by Statista revealed that worldwide spending on data storage units is expected to exceed 78 billion U.S. dollars by 2021. Going by these storage stats, it can be certainly said that data is going to be amplified at a much faster rate, and companies do not have a choice but to be geared up for a data boom and still be relevant. When it comes to data management/storage, information technology has risen to all its glory with concepts like machine learning. While the idea of such profound approaches is thrilling, the real question boils down to whether organizations are ready as well as equipped enough to handle them. The answer to this might be NO. But, can companies make changes and still thrive? Most definitely, YES! To make this concept more understandable, here is a list of changes/trends that companies should adopt to make data storage a lot more easy and secure. 2. Top data storage trends that simplify data management Data corruption is one big issue that most companies face. The complications that unfold further because of the corruption of data are even more complicated to resolve. To fix this and other such data storage problems, companies have come up with trends that are resilient and flexible. These trends have the capability of making history in the world of technology, so, you better gear up to learn and later adapt to them. 2.1 AI storage continues to be the chief The speed with which AI hit the IT world just doesn’t seem to slow down even after all these years. We say this because, amongst all other concepts that were and are constantly being introduced, artificial intelligence is one applied science that has made the most amount of innovations. To further add to this, AI is now making enterprise data storage process easier with its various subsets like machine learning and deep learning. This technology is helping companies in accumulating multiple layers of data in a more assorted format. It is automating IT storages including data migrating, archiving, protecting, etc. With AI, companies will be able to control data storage across multiple locations and storage platforms. 2.2 Price markdown in Flash storage As per a report by Markets and Markets, the overall All-Flash Array Market was valued at USD 5.9 billion in 2018 and is expected to reach USD 17.8 billion by 2023, at a CAGR of 24.53% during this period. This growth only states that the need for all-flash storage is only going to broaden. Flash storage has always been a choice that most companies stayed away from mainly because of the price. But with this new trend of adopting flexible data storage ways coming in, flash storage has been offered at a much-depreciated price. The drop in the cost of this storage technology will finally enable businesses of all sizes to invest in this high-performance solution. READ MORE: HOW BUSINESS ANALYTICS ACCELERATES YOUR BUSINESS GROWTH 2.3 Hybrid multi cloud for the win With data growing every minute, just a “cloud” strategy will not be enough. In this wave of data storage services, hybrid multi-cloud is one concept that is helping manage off-premises data. With this growing concept, IT authorities will be able to collect, segregate and store, on-premises, and off-premises data in a much-sophisticated manner. This will enable in centrally managing while reducing the effort of data storage by automating policy-based data placement across a hybrid of multi-cloud and storage types. 2.4 Increased significance of software-defined storage More the data, less reliability on hardware devices – this is the growing attitude of most companies. This fear certainly has the possibility of becoming a reality. Hence, an addition to the cybersecurity strategy that companies can make is adopting software-defined storage. This approach of data storage disconnects the underlying physical storage hardware. It is programmed in a way that can function on policy-based management of resources, automated provision, and computerized storage capacity reassignment. Due to the automated function, scaling up and down of data is also faster. Some of the biggest advantages of this trend will be the governance, data protection, and security it will provide to the entire loop. 2.5 Non-Volatile Memory Express (NVMe) beats data center fabrics NVMe – as ornate as the name sounds, is a concept that is freshly introduced with the aim of making data storage simpler. Non-Volatile Memory Express is a concept that enables accessibility of high-speed storage media. It is a protocol that is showing great results in a short amount of time of its inception. NVMe not only increases the performance value of existing applications, but also enables new applications to real-time workload processing. This feature of high performance and low latency is surely a highlight of the concept. All in all, this entire trend seems to have a lot of potential that are yet to be explored. READ MORE: HOW TO MAXIMIZE VALUE FROM DATA COLLECTED FOR BUSINESSES SUCCESS 2.6 Acceleration of storage class memory Storage class memory is a perfect combination of flash storage and NVMe. This is because it perfectly fills in the gap between server storage and external storage. As data protection is one of the major concerns of enterprises, this upcoming trend, does not only protect data but also continually stores and improves it for easier segregation. A clear advantage that storage class memory has over flash and NVMe storages is that it provides memory-like byte-addressable access to data thus reducing piling up of irrelevant data. Another benefit of this trend is that it indulges in deeper integration of data for ensuring high performance and top-level data security. 2.7 Hyperconverged storage – a push to edge computing The increased demand for hyper converged storage is a result of the growth of hybrid cloud and software-defined infrastructure. Besides these technologies, its suitability for retail settings and remote offices is add on to its already existing set of features. It’s the capability of capturing data from a distance also enables cost-effectiveness and scales down the need to store everything on a public cloud. Hyper converged storage if used in its true essence can simplify IT operations and data storage for enterprises of all sizes. 3. The future of data storage According to the Internet World Stats, more than 4.5 billion internet users around the world relentlessly create an astronomical amount of data. This translates to propel companies into discovering methods or applications that help them store this data safe from harmful ransomware attacks and still use it productively for their advantage. One of the prime changes that can be estimated about the future of data storage is that companies will have to adapt to the rapid changes, and mould their process to enable quick and seamless storage of data. Another enhancement would be that IT managers and responsible authorities would have to be updated and proactive at all times to know what data storage has been newly introduced, and how it can be used for the company’s advantage. Here’s a thing, amongst all the research that enterprises are conducting, not all data storage technologies will end up becoming a hit, and will fulfil the specification of high-speed storage. But, looking at all the efforts that researchers are taking, we don’t think they are going to stop any sooner and neither is the augmentation of data!

Read More

CISA Keep Customer Focus in AI Adoption

Article | February 27, 2020

When it comes to adopting artificial intelligence (AI) and machine learning (ML) capabilities, it’s important to look at its range of effects from many different viewpoints.According to Senior Advisor for AI at the Cybersecurity and Infrastructure Security Agency (CISA) Martin Stanley, his agency wanted to look at adoption through three different perspectives: how CISA was going to use AI, how stakeholders will use AI, and how U.S. adversaries are going to use AI.You have to understand the needs of your stakeholders, but you also have to do it fast,” Stanley said at a Feb. 26 ServiceNow Federal Forum, adding that it’s a challenge to take in all the necessary information and deliver an outcome. AI and ML can help streamline this process. Stanley spoke about how a big percentage of the AI implementation is being purposeful in how the government’s data is managed and taking care of the data and technology is a key part to the adoption process. He also added that helping people by making work more efficient is key to why AI adoption is important saying: At the end of the day, this is all about helping people.

Read More

Spotlight

Wide Vision Technologies

Wide Vision Technologies, A web & mobile application development company focused on changing the way our clients think about the apps. Our applications are business-driven, user-focused, and highly innovative. We offer a proven and radically different way of designing & developing applications. Learn why organizations around the globe have started doing things the Epicenter way. We specialize Full Stack development, including AngularJS, NodeJs, in Custom Web Application Development, iOS/Android Apps Development, Open Source PHP Joomla, WordPress, Magento, Development, Responsive Web & Graphics Design services across the globe.

Events