MLW 2016: NBCUniversal, Warner Bros., USC - Using Metadata to Drive a New User Experience

| May 23, 2016

article image
Metadata is becoming ever more important, particularly in the media and entertainment industry. Without metadata, there is no way to keep track of the thousands of assets that are critical to the business. This session focuses on the challenges businesses have had with managing metadata using traditional tools, why that problems is coming to a head, and how they approached the problem differently with MarkLogic.

Spotlight

OTIS IT Inc.

A Little Established in 2005, OTIS IT provides staff augmentation and IT CONSULTING capabilities to clients who desire to gain and maintain their competitive edge through technology. OTIS IT has established a good client base by providing services to some of the most successful companies in the United States. OTIS IT services clients in a diverse group of industries ranging from manufacturing to financial services, from mid-size companies to the Fortune 500.

OTHER ARTICLES

NEW TECHNOLOGY CAN IMPROVE STORAGE CONGESTION OF AI’S MEMORY

Article | February 12, 2020

The upsurge in data generation and its computing has raised the need for more power, storage and speed. What we call as big data is extremely memory-hungry and power-sapping and to fetch this requirement, engineers have put forward an innovative method. Recently, electrical engineers at Northwestern University and the University of Messina in Italy have developed a new magnetic memory device that could potentially support the surge of data-centric computing, which requires ever-increasing power, storage, and speed. Based on antiferromagnetic (AFM) materials, the device is the smallest of its kind ever demonstrated and operates with record-low electrical current to write data.

Read More

COVID19: A crisis that necessitates Open Data

Article | February 12, 2020

The coronavirus outbreak in China has grown to a pandemic and is affecting the global health & social and economic dynamics. An ever increasing velocity and scale of analysis — in terms of both processing and access is required to succeed in the face of unimaginable shifts of market; health and social paradigms. The COVID-19 pandemic is accompanied by an Infodemic. With the global Novel Coronavirus pandemic filling headlines, TV news space and social media it can seem as if we are drowning in information and data about the virus. With so much data being pushed at us and shared it can be hard for the general public to know what is correct, what is useful and (unfortunately) what is dangerous. In general, levels of trust in scientists are quite high albeit with differences across countries and regions. A 2019 survey conducted across 140 countries showed that, globally, 72% of the respondents trusted scientists at “high” or “medium” levels. However, the proportion expressing “high” or “medium” levels of trust in science ranged from about 90% in Northern and Western Europe to 68% in South America and 48% in Central Africa (Rabesandratana, 2020). In times of crisis, like the ongoing spread of COVID-19, both scientific & non-scientific data should be a trusted source for information, analysis and decision making. While global sharing and collaboration of research data has reached unprecedented levels, challenges remain. Trust in at least some of the data is relatively low, and outstanding issues include the lack of specific standards, co-ordination and interoperability, as well as data quality and interpretation. To strengthen the contribution of open science to the COVID-19 response, policy makers need to ensure adequate data governance models, interoperable standards, sustainable data sharing agreements involving public sector, private sector and civil society, incentives for researchers, sustainable infrastructures, human and institutional capabilities and mechanisms for access to data across borders. The COVID19 data is cited critical for vaccine discovery; planning and forecasting for healthcare set up; emergency systems set up and expected to contribute to policy objectives like higher transparency and accountability, more informed policy debates, better public services, greater citizen engagement, and new business development. This is precisely why the need to have “open data” access to COVID-19 information is critical for humanity to succeed. In global emergencies like the coronavirus (COVID-19) pandemic, open science policies can remove obstacles to the free flow of research data and ideas, and thus accelerate the pace of research critical to combating the disease. UNESCO have set up open access to few data is leading a major role in this direction. Thankfully though, scientists around the world working on COVID-19 are able to work together, share data and findings and hopefully make a difference to the containment, treatment and eventually vaccines for COVID-19. Science and technology are essential to humanity’s collective response to the COVID-19 pandemic. Yet the extent to which policymaking is shaped by scientific evidence and by technological possibilities varies across governments and societies, and can often be limited. At the same time, collaborations across science and technology communities have grown in response to the current crisis, holding promise for enhanced cooperation in the future as well. A prominent example of this is the Coalition for Epidemic Preparedness Innovations (CEPI), launched in 2017 as a partnership between public, private, philanthropic and civil society organizations to accelerate the development of epidemic vaccines. Its ongoing work has cut the expected development time for a COVID-19 vaccine to 12–18 months, and its grants are providing quick funding for some promising early candidates. It is estimated that an investment of USD 2 billion will be needed, with resources being made available from a variety of sources (Yamey, et al., 2020). The Open COVID Pledge was launched in April 2020 by an international coalition of scientists, lawyers, and technology companies, and calls on authors to make all intellectual property (IP) under their control available, free of charge, and without encumbrances to help end the COVID-19 pandemic, and reduce the impact of the disease. Some notable signatories include Intel, Facebook, Amazon, IBM, Sandia National Laboratories, Hewlett Packard, Microsoft, Uber, Open Knowledge Foundation, the Massachusetts Institute of Technology, and AT&T. The signatories will offer a specific non-exclusive royalty-free Open COVID license to use IP for the purpose of diagnosing, preventing and treating COVID-19. Also illustrating the power of open science, online platforms are increasingly facilitating collaborative work of COVID-19 researchers around the world. A few examples include: 1. Research on treatments and vaccines is supported by Elixir, REACTing, CEPI and others. 2. WHO funded research and data organization. 3. London School of Hygiene and Tropical Medicine releases a dataset about the environments that have led to significant clusters of COVID-19 cases,containing more than 250 records with date, location, if the event was indoors or outdoors, and how many individuals became infected. (7/24/20) 4. The European Union Science Hub publishes a report on the concept of data-driven Mobility Functional Areas (MFAs). They demonstrate how mobile data calculated at a European regional scale can be useful for informing policies related to COVID-19 and future outbreaks. (7/16/20) While clinical, epidemiological and laboratory data about COVID-19 is widely available, including genomic sequencing of the pathogen, a number of challenges remain: 1. All data is not sufficiently findable, accessible, interoperable and reusable (FAIR), or not yet FAIR data. 2. Sources of data tend to be dispersed, even though many pooling initiatives are under way, curation needs to be operated “on the fly”. 3. In addition, many issues arise around the interpretation of data – this can be illustrated by the widely followed epidemiological statistics. Typically, the statistics concern “confirmed cases”, “deaths” and “recoveries”. Each of these items seem to be treated differently in different countries, and are sometimes subject to methodological changes within the same country. 4. Specific standards for COVID-19 data therefore need to be established, and this is one of the priorities of the UK COVID-19 Strategy. A working group within Research Data Alliance has been set up to propose such standards at an international level. Given the achievements and challenges of open science in the current crisis, lessons from prior experience & from SARS and MARS outbreaks globally can be drawn to assist the design of open science initiatives to address the COVID-19 crisis. The following actions can help to further strengthen open science in support of responses to the COVID-19 crisis: 1. Providing regulatory frameworks that would enable interoperability within the networks of large electronic health records providers, patient mediated exchanges, and peer-to-peer direct exchanges. Data standards need to ensure that data is findable, accessible, interoperable and reusable, including general data standards, as well as specific standards for the pandemic. 2. Working together by public actors, private actors, and civil society to develop and/or clarify a governance framework for the trusted reuse of privately-held research data toward the public interest. This framework should include governance principles, open data policies, trusted data reuse agreements, transparency requirements and safeguards, and accountability mechanisms, including ethical councils, that clearly define duties of care for data accessed in emergency contexts. 3. Securing adequate infrastructure (including data and software repositories, computational infrastructure, and digital collaboration platforms) to allow for recurrent occurrences of emergency situations. This includes a global network of certified trustworthy and interlinked repositories with compatible standards to guarantee the long-term preservation of FAIR COVID-19 data, as well as the preparedness for any future emergencies. 4. Ensuring that adequate human capital and institutional capabilities are in place to manage, create, curate and reuse research data – both in individual institutions and in institutions that act as data aggregators, whose role is real-time curation of data from different sources. In increasingly knowledge-based societies and economies, data are a key resource. Enhanced access to publicly funded data enables research and innovation, and has far-reaching effects on resource efficiency, productivity and competitiveness, creating benefits for society at large. Yet these benefits must also be balanced against associated risks to privacy, intellectual property, national security and the public interest. Entities such as UNESCO are helping the open science movement to progress towards establishing norms and standards that will facilitate greater, and more timely, access to scientific research across the world. Independent scientific assessments that inform the work of many United Nations bodies are indicating areas needing urgent action, and international cooperation can help with national capacities to implement them. At the same time, actively engaging with different stakeholders in countries around the dissemination of the findings of such assessments can help in building public trust in science.

Read More

Splunk Big Data Big Opportunity

Article | February 12, 2020

Splunk extracts insights from big data. It is growing rapidly, it has a large total addressable market, and it has tremendous momentum from its exposure to industry megatrends (i.e. the cloud, big data, the "internet of things," and security). Further, its strategy of continuous innovation is being validated as the company wins very large deals. Investors should not be distracted by a temporary slowdown in revenue growth, as the company has wisely transitioned to a subscription model. This article reviews the business, its strategy, valuation the sell-off is overdone and risks. We conclude with our thoughts on investing.

Read More
DATA SCIENCE

Man Vs. Machine: Peaking into the Future of Artificial Intelligence

Article | February 12, 2020

Stephen Hawking, one of the finest minds to have ever lived, once famously said, “AI is likely to be either the best or the worst thing to happen to humanity.” This is of course true, with valid arguments both for and against the proliferation of AI. As a practitioner, I have witnessed the AI revolution at close quarters as it unfolded at breathtaking pace over the last two decades. My personal view is that there is no clear black and white in this debate. The pros and cons are very contextual – who is developing it, for what application, in what timeframe, towards what end? It always helps to understand both sides of the debate. So let’s try to take a closer look at what the naysayers say. The most common apprehensions can be clubbed into three main categories: A. Large-scale Unemployment: This is the most widely acknowledged of all the risks of AI. Technology and machines replacing humans for doing certain types of work isn’t new. We all know about entire professions dwindling, and even disappearing, due to technology. Industrial Revolution too had led to large scale job losses, although many believe that these were eventually compensated for by means of creating new avenues, lowering prices, increasing wages etc. However, a growing number of economists no longer subscribe to the belief that over a longer term, technology has positive ramifications on overall employment. In fact, multiple studies have predicted large scale job losses due to technological advancements. A 2016 UN report concluded that 75% of jobs in the developing world are expected to be replaced by machines! Unemployment, particularly at a large scale, is a very perilous thing, often resulting in widespread civil unrest. AI’s potential impact in this area therefore calls for very careful political, sociological and economic thinking, to counter it effectively. B. Singularity: The concept of Singularity is one of those things that one would have imagined seeing only in the pages of a futuristic Sci-Fi novel. However, in theory, today it is a real possibility. In a nutshell, Singularity refers to that point in human civilization when Artificial Intelligence reaches a tipping point beyond which it evolves into a superintelligence that surpasses human cognitive powers, thereby potentially posing a threat to human existence as we know it today. While the idea around this explosion of machine intelligence is a very pertinent and widely discussed topic, unlike the case of technology driven unemployment, the concept remains primarily theoretical. There is as yet no consensus amongst experts on whether this tipping point can ever really be reached in reality. C. Machine Consciousness: Unlike the previous two points, which can be regarded as risks associated with the evolution of AI, the aspect of machine consciousness perhaps is best described as an ethical conundrum. The idea deals with the possibility of implanting human-like consciousness into machines, taking them beyond the realm of ‘thinking’ to that of ‘feeling, emotions and beliefs’. It’s a complex topic and requires delving into an amalgamation of philosophy, cognitive science and neuroscience. ‘Consciousness’ itself can be interpreted in multiple ways, bringing together a plethora of attributes like self-awareness, cause-effect in mental states, memory, experiences etc. To bring machines to a state of human-like consciousness would entail replicating all the activities that happen at a neural level in a human brain – by no means a meagre task. If and when this were to be achieved, it would require a paradigm shift in the functioning of the world. Human society, as we know it, will need a major redefinition to incorporate machines with consciousness co-existing with humans. It sounds far-fetched today, but questions such as this need pondering right now, so as to be able to influence the direction in which we move when it comes to AI and machine consciousness, while things are still in the ‘design’ phase so to speak. While all of the above are pertinent questions, I believe they don’t necessarily outweigh the advantages of AI. Of course, there is a need to address them systematically, control the path of AI development and minimize adverse impact. In my opinion, the greatest and most imminent risk is actually a fourth item, not often taken into consideration, when discussing the pitfalls of AI. D. Oligarchy: Or to put it differently, the question of control. Due to the very nature of AI – it requires immense investments in technology and science – there are realistically only a handful of organizations (private or government) that can make the leap into taking AI into the mainstream, in a scalable manner, and across a vast array of applications. There is going to be very little room for small upstarts, however smart they might be, to compete at scale against these. Given the massive aspects of our lives that will likely be steered by AI enabled machines, those who control that ‘intelligence’ will hold immense power over the rest of us. That all familiar phrase ‘with great power, comes great responsibility’ will take a whole new meaning – the organizations and/or individuals that are at the forefront of the generally available AI applications would likely have more power than the most despotic autocrats in history. This is a true and real hazard, aspects of which are already becoming areas of concern in the form of discussions around things like privacy. In conclusion, AI, like all major transformative events in human history, is certain to have wide reaching ramifications. But with careful forethought these can be addressed. In the short to medium term, the advantages of AI in enhancing our lives, will likely outweigh these risks. Any major conception that touches human lives in a broad manner, if not handled properly, can pose immense danger. The best analogy I can think of is religion – when not channelled appropriately, it probably poses a greater threat than any technological advancement ever could.

Read More

Spotlight

OTIS IT Inc.

A Little Established in 2005, OTIS IT provides staff augmentation and IT CONSULTING capabilities to clients who desire to gain and maintain their competitive edge through technology. OTIS IT has established a good client base by providing services to some of the most successful companies in the United States. OTIS IT services clients in a diverse group of industries ranging from manufacturing to financial services, from mid-size companies to the Fortune 500.

Events