Navigating Big Data Integration: Challenges and Strategies

Navigating Big Data Integration: Challenges and Strategies
Explore the complexities of integrating Big Data into your organization. Learn effective strategies for overcoming challenges to optimize your data integration process and maximize business outcomes.

Contents
1 Introduction
2 Challenges in Big Data Integration 3 Overcoming Integration Challenges: Strategies 4 Conclusion


1. Introduction

Big data integration is a critical component of effective data management for organizations of all sizes. While some CIOs may believe that consolidating legacy data sources into a single platform can solve integration challenges, the reality is often more complex. Data is vast and usually spread across multiple sources, making integration a daunting task.

Nearly 25% of businesses struggle with integrating new applications with their old systems. That’s because legacy system integration isn’t always easy to achieve.

(Source: Gartner)

Thus, to tackle big data integration effectively, it's essential to understand how it fits into the organization's overall data management strategy and determine the policies governing the integration process. In addition, there are several technical challenges involved in data integration, including ensuring all components work well together, reflecting trends in big data analytics, and finding skilled big data engineers and analysts.

2. Challenges in Big Data Integration


2.1 Data Volume, Velocity, and Variety Challenges

In order to effectively integrate big data, companies must address the three key components of volume, variety, and velocity. Coordinating and managing massive amounts of data is both logistically challenging and costly, especially with large volumes. Working with multiple data sources is also a major hurdle that necessitates advanced analytics resources and expertise. Large datasets can take weeks to process, making real-time data analytics an arduous task. This becomes particularly challenging when dealing with intricate and extensive datasets, where velocity poses a significant obstacle. Attempting to apply a uniform analytical process to all data sets may be impractical, further impeding progress.

2.2 Integration with Legacy Systems and Data Silos

According to a report, 25% of organizations have more than 50 unique data silos, and these prevent companies from harnessing their data for their business.

(Source: 451 Research)

The integration of legacy systems presents a significant challenge for companies, as it entails various difficulties, such as high maintenance costs, data silos, compliance issues, weaker data security, and a lack of integration with new systems. The maintenance of legacy systems is both expensive and futile, leaving a company with outdated technology and a tarnished reputation due to potential breaches. Furthermore, legacy systems may fail to meet evolving compliance regulations such as GDPR and lack appropriate data security measures. Over time, data silos can develop due to organizational structures and company culture, leading to difficulties in achieving effective data integration. Siloed data obstructs departments from accessing the full benefits of new systems, impeding technological growth within a company. Additionally, legacy systems may not be compatible with new systems, causing further communication issues.

2.3 Technical Challenges

Selecting the Right Big Data Integration Tools

Choosing the right tools, technologies and big data integration services is crucial to meet specific business needs. It can be challenging to keep up with the constantly evolving technology landscape, making it important to stay up-to-date with the latest trends and innovations. The decision-making process should involve a thorough evaluation of existing tools and technologies to determine their effectiveness and relevance to the integration process. Failure to choose the appropriate tools and technologies can lead to inefficiencies, longer processing times, and increased costs.

Ensuring Different Systems and Data Formats Compatibility

It is estimated that around 85% of big data projects will fail to meet all their objectives, illustrating the scale of the challenge that businesses face when trying to get a handle on complex and disparate data from across the enterprise.

(Source: Gartner)

In integrating big data, it is common to have different systems and data formats that need to be integrated. Ensuring compatibility between these different systems and data formats can be a challenge. A solution-based approach to this challenge is to use data integration platforms that provide support for a wide range of data formats and systems. This ensures that the integration process is seamless and efficient.

Addressing Issues of Data Quality and Completeness

To integrate big data successfully, it's essential to address issues related to data quality and completeness. Only accurate or complete data can lead to correct insights and precise decision-making, which can benefit businesses. Developing comprehensive data quality management strategies that include data profiling, cleansing, and validation is necessary to overcome this challenge. These strategies ensure that the data being integrated is accurate and complete, leading to better actionable insights and business intelligence.

2.4 Organizational Challenges

Developing Comprehensive Integration Strategy

Developing a clear and comprehensive integration strategy for big data can be challenging, but it is essential for success. The developed strategy should clearly outline the business objectives and the scope of the integration effort as well as identify the key stakeholders involved. Additionally, it should define the technical requirements and resources necessary to support the integration effort.

Building Cross-Functional Teams to Support Integration Efforts

Building cross-functional teams for successful data integration can be challenging due to identifying the right individuals with diverse skill sets and navigating complex technical environments. However, it is crucial to form teams comprising members from various departments, including IT, data science, and administration, who collaborate to identify business needs, devise an integration strategy, and implement integration solutions. Building such teams promotes effective communication and coordination across departments and stakeholders, enabling organizations to leverage data assets effectively.

3. Overcoming Integration Challenges: Strategies

3.1 Conducting Thorough Analysis of Data Infrastructure

Conducting a thorough analysis of existing data infrastructure and systems is the first step in any data integration effort. This analysis should identify the strengths and weaknesses of the existing infrastructure and systems. This information can be used to develop a comprehensive integration strategy that addresses existing challenges and identifies opportunities for improvement.

3.2 Prioritizing Projects Based On Business Needs

It is crucial to prioritize, and sequence integration projects based on business needs to leverage the benefits of data integration. This approach ensures that resources are allocated appropriately and the most critical projects are addressed first. Conducting a thorough cost-benefit analysis is an effective way to determine the value and impact of each project to prioritize and plan accordingly.

3.3 Implementing Scalable and Flexible Solutions

In orderto accommodate the ever-increasing amount of data and evolving business requirements, it is essential to implement scalable and flexible integration solutions. This approach ensures that the integration process remains efficient and can adapt to changing needs. Modern data integration platforms that support cloud-based solutions, real-time data processing, and flexible data models can be adopted to achieve this.

3.4 Establishing Robust Data Governance Practices

Establishing robust data governance practices ensures data is managed effectively throughout the integration process. This involves defining clear policies, procedures, and standards for data management across the entire data lifecycle, from acquisition to disposition. Additionally, data quality and security controls should be implemented, and employees must be trained on data governance best practices.

Organizations can effectively manage data by establishing these practices throughout the integration process. It includes defining data ownership, establishing policies, and implementing quality controls. Ultimately, this approach ensures that data is accurate, complete, and reliable and that the organization is compliant with any relevant regulations or standards.

4. Conclusion

Integrating big data represents a formidable obstacle for many organizations, yet with the proper strategies in place, these challenges can be surmounted, enabling businesses to unleash the full potential of their data assets. It is paramount that organizations possess a comprehensive and lucid understanding of both the technical and organizational challenges inherent in integrating big data. Businesses must prioritize data integration and processing initiatives based on their commercial requirements, employ scalable and flexible solutions, and establish robust data governance practices. By doing so, they can acquire invaluable insights that drive business growth and innovation, improve operational efficiency, and enhance their competitiveness in the market.

Spotlight

Zinnia Systems

We empower Communication Service Providers to focus on building long-term profitable relationships with customers by automating majority of their business processes and by progressively transforming their customer and revenue management infrastructure into a high-performance, scalable and robust platform. We provide full suite of high quality Customer Management and Billing solutions including software products, consulting, installation & integration services and support. Our integrated product suite, Zarada, is designed specifically to provide an end-to-end and easy-to-use solution for quickly launching Converged Services and WiMAX Services in growth markets. With flexible automation of customer interactions, real-time analytics on customer behaviour and high-performance charging system, Zarada enables Communication Service Providers to drive profitable growth through operational excellence in customer facing processes as well as core revenue management functions.

OTHER ARTICLES
Business Intelligence, Big Data Management, Data Science

How Artificial Intelligence Is Transforming Businesses

Article | May 2, 2023

Whilst there are many people that associate AI with sci-fi novels and films, its reputation as an antagonist to fictional dystopic worlds is now becoming a thing of the past, as the technology becomes more and more integrated into our everyday lives.AI technologies have become increasingly more present in our daily lives, not just with Alexa’s in the home, but also throughout businesses everywhere, disrupting a variety of different industries with often tremendous results. The technology has helped to streamline even the most mundane of tasks whilst having a breath-taking impact on a company’s efficiency and productivity.However, AI has not only transformed administrative processes and freed up more time for companies, it has also contributed to some ground-breaking moments in business, being a must-have for many in order to keep up with the competition.

Read More
Business Intelligence, Big Data Management, Big Data

DRIVING DIGITAL TRANSFORMATION WITH RPA, ML AND WORKFLOW AUTOMATION

Article | July 4, 2023

The latest pace of advancements in technology paves way for businesses to pay attention to digital strategy in order to drive effective digital transformation. Digital strategy focuses on leveraging technology to enhance business performance, specifying the direction where organizations can create new competitive advantages with it. Despite a lot of buzz around its advancement, digital transformation initiatives in most businesses are still in its infancy.Organizations that have successfully implemented and are effectively navigating their way towards digital transformation have seen that deploying a low-code workflow automation platform makes them more efficient.

Read More
Business Intelligence, Big Data Management, Big Data

AI and Predictive Analytics: Myth, Math, or Magic

Article | July 18, 2023

We are a species invested in predicting the future as if our lives depended on it. Indeed, good predictions of where wolves might lurk were once a matter of survival. Even as civilization made us physically safer, prediction has remained a mainstay of culture, from the haruspices of ancient Rome inspecting animal entrails to business analysts dissecting a wealth of transactions to foretell future sales. With these caveats in mind, I predict that in 2020 (and the decade ahead) we will struggle if we unquestioningly adopt artificial intelligence (AI) in predictive analytics, founded on an unjustified overconfidence in the almost mythical power of AI's mathematical foundations. This is another form of the disease of technochauvinism I discussed in a previous article.

Read More

Predictive analytics vs AI Why the difference matters

Article | February 10, 2020

There are few movie scenes I can recall from my childhood, but I vividly remember seeing the 1968 Stanley Kubrick sci-fi movie 2001 A Space Odyssey in 1970 with my older cousin. What stays with me to this day is the scene where astronaut Dave asks HAL, the homicidal computer based on artificial intelligence (AI), to open the pod bay doors. HAL's eerie reply: I'm sorry, Dave. I'm afraid I can't do that.In that moment, the concept of man vs. machine was created, predicated on the idea that machines created by man and using AI could (eventually) defy orders, position themselves in the vanguard, and overthrow humankind. Fast forward to today. Within the information governance space, there are two terms that have been used quite frequently in recent years analytics and AI. Often they are used interchangeably and are practically synonymous.

Read More

Spotlight

Zinnia Systems

We empower Communication Service Providers to focus on building long-term profitable relationships with customers by automating majority of their business processes and by progressively transforming their customer and revenue management infrastructure into a high-performance, scalable and robust platform. We provide full suite of high quality Customer Management and Billing solutions including software products, consulting, installation & integration services and support. Our integrated product suite, Zarada, is designed specifically to provide an end-to-end and easy-to-use solution for quickly launching Converged Services and WiMAX Services in growth markets. With flexible automation of customer interactions, real-time analytics on customer behaviour and high-performance charging system, Zarada enables Communication Service Providers to drive profitable growth through operational excellence in customer facing processes as well as core revenue management functions.

Related News

Big Data

Airbyte Racks Up Awards from InfoWorld, BigDATAwire, Built In; Builds Largest and Fastest-Growing User Community

Airbyte | January 30, 2024

Airbyte, creators of the leading open-source data movement infrastructure, today announced a series of accomplishments and awards reinforcing its standing as the largest and fastest-growing data movement community. With a focus on innovation, community engagement, and performance enhancement, Airbyte continues to revolutionize the way data is handled and processed across industries. “Airbyte proudly stands as the front-runner in the data movement landscape with the largest community of more than 5,000 daily users and over 125,000 deployments, with monthly data synchronizations of over 2 petabytes,” said Michel Tricot, co-founder and CEO, Airbyte. “This unparalleled growth is a testament to Airbyte's widespread adoption by users and the trust placed in its capabilities.” The Airbyte community has more than 800 code contributors and 12,000 stars on GitHub. Recently, the company held its second annual virtual conference called move(data), which attracted over 5,000 attendees. Airbyte was named an InfoWorld Technology of the Year Award finalist: Data Management – Integration (in October) for cutting-edge products that are changing how IT organizations work and how companies do business. And, at the start of this year, was named to the Built In 2024 Best Places To Work Award in San Francisco – Best Startups to Work For, recognizing the company's commitment to fostering a positive work environment, remote and flexible work opportunities, and programs for diversity, equity, and inclusion. Today, the company received the BigDATAwire Readers/Editors Choice Award – Big Data and AI Startup, which recognizes companies and products that have made a difference. Other key milestones in 2023 include the following. Availability of more than 350 data connectors, making Airbyte the platform with the most connectors in the industry. The company aims to increase that to 500 high-quality connectors supported by the end of this year. More than 2,000 custom connectors were created with the Airbyte No-Code Connector Builder, which enables data connectors to be made in minutes. Significant performance improvement with database replication speed increased by 10 times to support larger datasets. Added support for five vector databases, in addition to unstructured data sources, as the first company to build a bridge between data movement platforms and artificial intelligence (AI). Looking ahead, Airbyte will introduce data lakehouse destinations, as well as a new Publish feature to push data to API destinations. About Airbyte Airbyte is the open-source data movement infrastructure leader running in the safety of your cloud and syncing data from applications, APIs, and databases to data warehouses, lakes, and other destinations. Airbyte offers four products: Airbyte Open Source, Airbyte Self-Managed, Airbyte Cloud, and Powered by Airbyte. Airbyte was co-founded by Michel Tricot (former director of engineering and head of integrations at Liveramp and RideOS) and John Lafleur (serial entrepreneur of dev tools and B2B). The company is headquartered in San Francisco with a distributed team around the world. To learn more, visit airbyte.com.

Read More

Big Data Management

The Modern Data Company Recognized in Gartner's Magic Quadrant for Data Integration

The Modern Data Company | January 23, 2024

The Modern Data Company, recognized for its expertise in developing and managing advanced data products, is delighted to announce its distinction as an honorable mention in Gartner's 'Magic Quadrant for Data Integration Tools,' powered by our leading product, DataOS. “This accolade underscores our commitment to productizing data and revolutionizing data management technologies. Our focus extends beyond traditional data management, guiding companies on their journey to effectively utilize data, realize tangible ROI on their data investments, and harness advanced technologies such as AI, ML, and Large Language Models (LLMs). This recognition is a testament to Modern Data’s alignment with the latest industry trends and our dedication to setting new standards in data integration and utilization.” – Srujan Akula, CEO of The Modern Data Company The inclusion in the Gartner report highlights The Modern Data Company's pivotal role in shaping the future of data integration. Our innovative approach, embodied in DataOS, enables businesses to navigate the complexities of data management, transforming data into a strategic asset. By simplifying data access and integration, we empower organizations to unlock the full potential of their data, driving insights and innovation without disruption. "Modern Data's recognition as an Honorable Mention in the Gartner MQ for Data Integration is a testament to the transformative impact their solutions have on businesses like ours. DataOS has been pivotal in allowing us to integrate multiple data sources, enabling our teams to have access to the data needed to make data driven decisions." – Emma Spight, SVP Technology, MIND 24-7 The Modern Data Company simplifies how organizations manage, access, and interact with data using its DataOS (data operating system) that unifies data silos, at scale. It provides ontology support, graph modeling, and a virtual data tier (e.g. a customer 360 model). From a technical point of view, it closes the gap from conceptual to physical data model. Users can define conceptually what they want and its software traverses and integrates data. DataOS provides a structured, repeatable approach to data integration that enhances agility and ensures high-quality outputs. This shift from traditional pipeline management to data products allows for more efficient data operations, as each 'product' is designed with a specific purpose and standardized interfaces, ensuring consistency across different uses and applications. With DataOS, businesses can expect a transformative impact on their data strategies, marked by increased efficiency and a robust framework for handling complex data ecosystems, allowing for more and faster iterations of conceptual models. About The Modern Data Company The Modern Data Company, with its flagship product DataOS, revolutionizes the creation of data products. DataOS® is engineered to build and manage comprehensive data products to foster data mesh adoption, propelling organizations towards a data-driven future. DataOS directly addresses key AI/ML and LLM challenges: ensuring quality data, scaling computational resources, and integrating seamlessly into business processes. In our commitment to provide open systems, we have created an open data developer platform specification that is gaining wide industry support.

Read More

Big Data Management

data.world Integrates with Snowflake Data Quality Metrics to Bolster Data Trust

data.world | January 24, 2024

data.world, the data catalog platform company, today announced an integration with Snowflake, the Data Cloud company, that brings new data quality metrics and measurement capabilities to enterprises. The data.world Snowflake Collector now empowers enterprise data teams to measure data quality across their organization on-demand, unifying data quality and analytics. Customers can now achieve greater trust in their data quality and downstream analytics to support mission-critical applications, confident data-driven decision-making, and AI initiatives. Data quality remains one of the top concerns for chief data officers and a critical barrier to creating a data-driven culture. Traditionally, data quality assurance has relied on manual oversight – a process that’s tedious and fraught with inefficacy. The data.world Data Catalog Platform now delivers Snowflake data quality metrics directly to customers, streamlining quality assurance timelines and accelerating data-first initiatives. Data consumers can access contextual information in the catalog or directly within tools such as Tableau and PowerBI via Hoots – data.world’s embedded trust badges – that broadcast data health status and catalog context, bolstering transparency and trust. Additionally, teams can link certification and DataOps workflows to Snowflake's data quality metrics to automate manual workflows and quality alerts. Backed by a knowledge graph architecture, data.world provides greater insight into data quality scores via intelligence on data provenance, usage, and context – all of which support DataOps and governance workflows. “Data trust is increasingly crucial to every facet of business and data teams are struggling to verify the quality of their data, facing increased scrutiny from developers and decision-makers alike on the downstream impacts of their work, including analytics – and soon enough, AI applications,” said Jeff Hollan, Director, Product Management at Snowflake. “Our collaboration with data.world enables data teams and decision-makers to verify and trust their data’s quality to use in mission-critical applications and analytics across their business.” “High-quality data has always been a priority among enterprise data teams and decision-makers. As enterprise AI ambitions grow, the number one priority is ensuring the data powering generative AI is clean, consistent, and contextual,” said Bryon Jacob, CTO at data.world. “Alongside Snowflake, we’re taking steps to ensure data scientists, analysts, and leaders can confidently feed AI and analytics applications data that delivers high-quality insights, and supports the type of decision-making that drives their business forward.” The integration builds on the robust collaboration between data.world and Snowflake. Most recently, the companies announced an exclusive offering for joint customers, streamlining adoption timelines and offering a new attractive price point. The data.world's knowledge graph-powered data catalog already offers unique benefits for Snowflake customers, including support for Snowpark. This offering is now available to all data.world enterprise customers using the Snowflake Collector, as well as customers taking advantage of the Snowflake-only offering. To learn more about the data quality integration or the data.world data catalog platform, visit data.world. About data.world data.world is the data catalog platform built for your AI future. Its cloud-native SaaS (software-as-a-service) platform combines a consumer-grade user experience with a powerful Knowledge Graph to deliver enhanced data discovery, agile data governance, and actionable insights. data.world is a Certified B Corporation and public benefit corporation and home to the world’s largest collaborative open data community with more than two million members, including ninety percent of the Fortune 500. Our company has 76 patents and has been named one of Austin’s Best Places to Work seven years in a row.

Read More

Big Data

Airbyte Racks Up Awards from InfoWorld, BigDATAwire, Built In; Builds Largest and Fastest-Growing User Community

Airbyte | January 30, 2024

Airbyte, creators of the leading open-source data movement infrastructure, today announced a series of accomplishments and awards reinforcing its standing as the largest and fastest-growing data movement community. With a focus on innovation, community engagement, and performance enhancement, Airbyte continues to revolutionize the way data is handled and processed across industries. “Airbyte proudly stands as the front-runner in the data movement landscape with the largest community of more than 5,000 daily users and over 125,000 deployments, with monthly data synchronizations of over 2 petabytes,” said Michel Tricot, co-founder and CEO, Airbyte. “This unparalleled growth is a testament to Airbyte's widespread adoption by users and the trust placed in its capabilities.” The Airbyte community has more than 800 code contributors and 12,000 stars on GitHub. Recently, the company held its second annual virtual conference called move(data), which attracted over 5,000 attendees. Airbyte was named an InfoWorld Technology of the Year Award finalist: Data Management – Integration (in October) for cutting-edge products that are changing how IT organizations work and how companies do business. And, at the start of this year, was named to the Built In 2024 Best Places To Work Award in San Francisco – Best Startups to Work For, recognizing the company's commitment to fostering a positive work environment, remote and flexible work opportunities, and programs for diversity, equity, and inclusion. Today, the company received the BigDATAwire Readers/Editors Choice Award – Big Data and AI Startup, which recognizes companies and products that have made a difference. Other key milestones in 2023 include the following. Availability of more than 350 data connectors, making Airbyte the platform with the most connectors in the industry. The company aims to increase that to 500 high-quality connectors supported by the end of this year. More than 2,000 custom connectors were created with the Airbyte No-Code Connector Builder, which enables data connectors to be made in minutes. Significant performance improvement with database replication speed increased by 10 times to support larger datasets. Added support for five vector databases, in addition to unstructured data sources, as the first company to build a bridge between data movement platforms and artificial intelligence (AI). Looking ahead, Airbyte will introduce data lakehouse destinations, as well as a new Publish feature to push data to API destinations. About Airbyte Airbyte is the open-source data movement infrastructure leader running in the safety of your cloud and syncing data from applications, APIs, and databases to data warehouses, lakes, and other destinations. Airbyte offers four products: Airbyte Open Source, Airbyte Self-Managed, Airbyte Cloud, and Powered by Airbyte. Airbyte was co-founded by Michel Tricot (former director of engineering and head of integrations at Liveramp and RideOS) and John Lafleur (serial entrepreneur of dev tools and B2B). The company is headquartered in San Francisco with a distributed team around the world. To learn more, visit airbyte.com.

Read More

Big Data Management

The Modern Data Company Recognized in Gartner's Magic Quadrant for Data Integration

The Modern Data Company | January 23, 2024

The Modern Data Company, recognized for its expertise in developing and managing advanced data products, is delighted to announce its distinction as an honorable mention in Gartner's 'Magic Quadrant for Data Integration Tools,' powered by our leading product, DataOS. “This accolade underscores our commitment to productizing data and revolutionizing data management technologies. Our focus extends beyond traditional data management, guiding companies on their journey to effectively utilize data, realize tangible ROI on their data investments, and harness advanced technologies such as AI, ML, and Large Language Models (LLMs). This recognition is a testament to Modern Data’s alignment with the latest industry trends and our dedication to setting new standards in data integration and utilization.” – Srujan Akula, CEO of The Modern Data Company The inclusion in the Gartner report highlights The Modern Data Company's pivotal role in shaping the future of data integration. Our innovative approach, embodied in DataOS, enables businesses to navigate the complexities of data management, transforming data into a strategic asset. By simplifying data access and integration, we empower organizations to unlock the full potential of their data, driving insights and innovation without disruption. "Modern Data's recognition as an Honorable Mention in the Gartner MQ for Data Integration is a testament to the transformative impact their solutions have on businesses like ours. DataOS has been pivotal in allowing us to integrate multiple data sources, enabling our teams to have access to the data needed to make data driven decisions." – Emma Spight, SVP Technology, MIND 24-7 The Modern Data Company simplifies how organizations manage, access, and interact with data using its DataOS (data operating system) that unifies data silos, at scale. It provides ontology support, graph modeling, and a virtual data tier (e.g. a customer 360 model). From a technical point of view, it closes the gap from conceptual to physical data model. Users can define conceptually what they want and its software traverses and integrates data. DataOS provides a structured, repeatable approach to data integration that enhances agility and ensures high-quality outputs. This shift from traditional pipeline management to data products allows for more efficient data operations, as each 'product' is designed with a specific purpose and standardized interfaces, ensuring consistency across different uses and applications. With DataOS, businesses can expect a transformative impact on their data strategies, marked by increased efficiency and a robust framework for handling complex data ecosystems, allowing for more and faster iterations of conceptual models. About The Modern Data Company The Modern Data Company, with its flagship product DataOS, revolutionizes the creation of data products. DataOS® is engineered to build and manage comprehensive data products to foster data mesh adoption, propelling organizations towards a data-driven future. DataOS directly addresses key AI/ML and LLM challenges: ensuring quality data, scaling computational resources, and integrating seamlessly into business processes. In our commitment to provide open systems, we have created an open data developer platform specification that is gaining wide industry support.

Read More

Big Data Management

data.world Integrates with Snowflake Data Quality Metrics to Bolster Data Trust

data.world | January 24, 2024

data.world, the data catalog platform company, today announced an integration with Snowflake, the Data Cloud company, that brings new data quality metrics and measurement capabilities to enterprises. The data.world Snowflake Collector now empowers enterprise data teams to measure data quality across their organization on-demand, unifying data quality and analytics. Customers can now achieve greater trust in their data quality and downstream analytics to support mission-critical applications, confident data-driven decision-making, and AI initiatives. Data quality remains one of the top concerns for chief data officers and a critical barrier to creating a data-driven culture. Traditionally, data quality assurance has relied on manual oversight – a process that’s tedious and fraught with inefficacy. The data.world Data Catalog Platform now delivers Snowflake data quality metrics directly to customers, streamlining quality assurance timelines and accelerating data-first initiatives. Data consumers can access contextual information in the catalog or directly within tools such as Tableau and PowerBI via Hoots – data.world’s embedded trust badges – that broadcast data health status and catalog context, bolstering transparency and trust. Additionally, teams can link certification and DataOps workflows to Snowflake's data quality metrics to automate manual workflows and quality alerts. Backed by a knowledge graph architecture, data.world provides greater insight into data quality scores via intelligence on data provenance, usage, and context – all of which support DataOps and governance workflows. “Data trust is increasingly crucial to every facet of business and data teams are struggling to verify the quality of their data, facing increased scrutiny from developers and decision-makers alike on the downstream impacts of their work, including analytics – and soon enough, AI applications,” said Jeff Hollan, Director, Product Management at Snowflake. “Our collaboration with data.world enables data teams and decision-makers to verify and trust their data’s quality to use in mission-critical applications and analytics across their business.” “High-quality data has always been a priority among enterprise data teams and decision-makers. As enterprise AI ambitions grow, the number one priority is ensuring the data powering generative AI is clean, consistent, and contextual,” said Bryon Jacob, CTO at data.world. “Alongside Snowflake, we’re taking steps to ensure data scientists, analysts, and leaders can confidently feed AI and analytics applications data that delivers high-quality insights, and supports the type of decision-making that drives their business forward.” The integration builds on the robust collaboration between data.world and Snowflake. Most recently, the companies announced an exclusive offering for joint customers, streamlining adoption timelines and offering a new attractive price point. The data.world's knowledge graph-powered data catalog already offers unique benefits for Snowflake customers, including support for Snowpark. This offering is now available to all data.world enterprise customers using the Snowflake Collector, as well as customers taking advantage of the Snowflake-only offering. To learn more about the data quality integration or the data.world data catalog platform, visit data.world. About data.world data.world is the data catalog platform built for your AI future. Its cloud-native SaaS (software-as-a-service) platform combines a consumer-grade user experience with a powerful Knowledge Graph to deliver enhanced data discovery, agile data governance, and actionable insights. data.world is a Certified B Corporation and public benefit corporation and home to the world’s largest collaborative open data community with more than two million members, including ninety percent of the Fortune 500. Our company has 76 patents and has been named one of Austin’s Best Places to Work seven years in a row.

Read More

Events