Knowledge is power in business, and knowing what will happen in the future is a superpower. When
data analytics, statistical algorithms, AI, and machine learning are combined, this superpower, also known as predictive analytics, becomes a skill that can significantly influence on a company's choices and outcomes.
Predictive analytics is the use of modern analytical tools. For example, machine learning concludes about the future based on historical data. Businesses can consider application of predictive analytics tools and models to forecast trends and generate accurate future predictions by leveraging historical and current data. Let’s look at the top three reasons why predictive analytics is important for your business.
Why is Predictive Analytics Important for Businesses?
Businesses are looking at predictive analytics to help them solve challenges and discover new opportunities. Here are some of the most common benefits of predictive business analytics and an understanding of how is predictive analytics used in business.
Fraud Detection
In general, various analyzing techniques are merged to analyze data to enhance the accuracy of pattern recognition and discover criminal behavior, thereby reducing the incidence of frequent fraud. With
behavioral analytics, you can look at any suspicious behavior and activities that happen on a network in real-time to look for fraud, zero-day breaches, and underlying threats.
Enhancing Business Campaigns
The predictive analytics process can help you optimize marketing campaigns and promotional events. Predictive designs helps businesses attract, retain, and increase valuable customers by determining their purchase responses and promoting cross-sell opportunities.
Minimizing Potential Risk
The predictive analytics process helps businesses decide on appropriate steps to avoid or reduce losses. Predictive analytics is revolutionizing risk management by alerting businesses about future developments. For example, credit scores, which financial institutions use to predict defaulters depending on a user's purchasing behavior.
How Does Predictive Analytics Help the C-Suite?
The C-suite is the final decision maker, so they are the ones who must use predictive analytics the most for
insightful decision-making. Let’s look at ways in which predictive analytics can help C-level executives.
Predict Customer Behavior
Predictive analytics utilizes data to forecast
future customer behavior. Customer intent becomes the primary aspect rather than historical transactional data, allowing for hyper-personalized marketing and communications. For example, researchers at China's Renmin University used predictive analytics and machine learning to figure out that
data on consumer interests and jobs can predict customer preferences and purchase intent for cars.
Predicting customer requirements accurately is a huge opportunity for businesses. Companies can use AI and predictive analytics models to figure out what customers will do based on data instead of guesswork.
Pricing Optimization
Predictive business analytics can help companies improve pricing optimization quickly and affordably. A business can use predictive analytics to figure out how to make a product more affordable in the future by looking at past data, industry trends, competitive prices, and other data sources.
Each customer provides a unique value to the products. To add to the complexity, a consumer's value of a product may vary depending on the purchase circumstances and environment. Simplicity in pricing misses opportunities and can result in a significant drop in revenue.
Product information, consumer segmentation, and purchase circumstances are all enhanced by predictive analytics. Businesses can use this data to uncover trends and patterns to help them price more profitably.
Predicting Growth and Market Trends
Businesses can use predictive market analysis to decipher existing and future market trends. With this data, businesses can develop a plan to maximize opportunities, expand market share, and sustain disruption and new competition. Companies can use it to detect unmet customer demand and fill any gaps. Consumption sentiment is revealed through social media data. A product that does not match customer demand creates a market opportunity for a new product or service.
Predictive market analysis can uncover customer perceptions of a product or service and unmet consumer demands. Predictive business analytics helps businesses better understand their customers, meet their needs, and find new ways to earn revenue and grow.
Example: Reu La La Uses Predictive Analytics to Increase its Revenue by 10%
You often hear about giant enterprises like Amazon, Airbnb, Microsoft, Google, and others utilizing predictive analytics to extend their reach, boost sales, and more. Today let’s look at Reu La La and how they used predictive analytics to enhance their revenue.
Rue La La, a boutique retailer, often needs to predict sales and fix pricing for products being sold for the first time in its online store with no existing sales data. They observed that many products were either sold out within the first few hours of release or did not sell, which lead to revenue loss.
Rue La La took action by creating a set of quantitative qualities for its items and predicting future demand by utilizing
historical sales data. They used statistical and computing technologies, such as regression analysis and machine learning, to create a demand forecast and pricing optimization model. In partnership with the Massachusetts Institute of Technology, they created an automated price decision assistance tool. Revenue increased from 10% to 13% across all departments because they used the pricing tool's proposed optimal rates.
Conclusion
“As data piles up, we have ourselves a genuine gold rush. But data isn’t the gold. I repeat, data in its raw form is boring crud. The gold is what’s discovered therein.”
Eric Siegel
You can consider the predictions that predictive analytics makes as gold, but, using predictive analytics is like a crystal ball that shows the future. You can look into the future, prevent issues in your company from escalating, and recognize profitable possibilities.
If you haven't started leveraging predictive analytics, start by experimenting with it on a modest scale and gradually build up as you acquire expertise and observe positive outcomes.
FAQ
How can Predictive Analytics Improve Performance Measurement?
Predictive analytics improves performance measurements by expanding an organization's understanding of the important performance drivers. It also helps with the weighting of different performance metrics based on how important they are.
What Are the Four Steps in Predictive Analytics?
In simple terms, predictive analytics involves four steps: creating a baseline prediction, assessing it, adding assumptions, and building a consensus demand plan. To do so, we must first choose a modeling technique, create a test design, then construct the model, evaluate the mode, and achieve alignment.
What Are the Three Different Types of Predictive Analytics?
Businesses utilize three forms of analytics to drive their decision-making:
Descriptive analytics — tells something that has already happened;
Predictive analytics — shows what can happen;
Prescriptive analytics — tells what should happen in the future