Seven must-haves for business intelligence success

MARILYN DE VILLIERS | May 23, 2019

article image
This is according to Karl Dinkelmann, director of data enablement, business intelligence (BI) and analytics at AccTech Systems, who told delegates at ITWeb Business Intelligence and Analytics Summit 2019 this week that all indications point to the fact that any company embarking on an analytics project has an 8.5 out of 10 chance of failing.

Spotlight

ThoughtSpot

ThoughtSpot’s AI-Driven analytics platform puts the power of a thousand analysts in every business person's hands. With ThoughtSpot, you can use search to easily analyze your data or automatically get trusted insights pushed to you with a single click. ThoughtSpot connects with any on-premise, cloud, big data, or desktop data source and deploys 85 percent faster than legacy technologies. BI & Analytics teams have used ThoughtSpot to cut reporting backlogs by more than 90 percent and make more than 3 million decisions - and counting.

OTHER ARTICLES

Automotive DevOps Rules of the Road Ahead

Article | March 13, 2020

DevOps will provide over-the-air (OTA), seamless software updates which would allow important and immediate updates without affecting the car’s capabilities through Liquid Software liquid software. OTA updates will enable automakers to fix engine and automotive malfunctions, as well as implement safety standards directly into the program. Tesla is one of the pioneers of over-the-air updates but while its’ cars are off. In total, Tesla’s updates are usually about 30 minutes. Since 2012, hundreds of OTA updates have been sent out by the company to adjust things like speed limit settings, acceleration, battery issues, and even braking distance. Most car manufacturers are behind when it comes to over-the-air software updates.

Read More

New Spain data center becomes test bed for Microsoft and Telefonica’s expanded partnership

Article | March 13, 2020

Microsoft recently announced that it’s leveraging a new global strategic partnership with Telefonica to jointly develop “go-to-market plans for regions the company does business.Last year during Mobile World Congress 2019, Microsoft took the veil off its newfound relationship with the international telecommunications giant, Telefonica.Highlighted during this year’s announcement was Microsoft’s opening of a new datacenter region in Spain. Microsoft’s new data center comes at a time where the company looks to help expedite Spain’s digital transformation.

Read More

3 analytics misconceptions holding your business back (and how to overcome them)

Article | March 13, 2020

It’s game on for digital transformation. Success in this hyper-digital world requires meeting market demand and exceeding customer expectations. And without the use of advanced analytics and AI initiatives to deliver predictive, guided insights, organizations will fall behind. According to IDC, a whopping 83% of CEOs want their organizations to be more data-driven, and the top priority for 87% of CXOs is being an intelligent enterprise. Yet that urgency is often stymied by perceived—but often inaccurate—obstacles.

Read More
DATA SCIENCE

How Machine Learning Can Take Data Science to a Whole New Level

Article | March 13, 2020

Introduction Machine Learning (ML) has taken strides over the past few years, establishing its place in data analytics. In particular, ML has become a cornerstone in data science, alongside data wrangling, and data visualization, among other facets of the field. Yet, we observe many organizations still hesitant when allocating a budget for it in their data pipelines. The data engineer role seems to attract lots of attention, but few companies leverage the machine learning expert/engineer. Could it be that ML can add value to other enterprises too? Let's find out by clarifying certain concepts. What Machine Learning is So that we are all on the same page, let's look at a down-to-earth definition of ML that you can include in a company meeting, a report, or even within an email to a colleague who isn't in this field. Investopedia defines ML as "the concept that a computer program can learn and adapt to new data without human intervention." In other words, if your machine (be it a computer, a smartphone, or even a smart device) can learn on its own, using some specialized software, then it's under the ML umbrella. It's important to note that ML is also a stand-alone field of research, predating most AI systems, even if the two are linked, as we'll see later on. How Machine Learning is different from Statistics It's also important to note that ML is different from Statistics, even if some people like to view the former as an extension of the latter. However, there is a fundamental difference that most people aren't aware of yet. Namely, ML is data-driven while Statistics is, for the most part, model-driven. This statement means that most Stats-based inferences are made by assuming a particular distribution in the data, or the interactions of different variables, and making predictions based on our mathematical models of these distributions. ML may employ distributions in some niche cases, but for the most part, it looks at data as-is, without making any assumptions about it. Machine Learning’s role in data science work Let’s now get to the crux of the matter and explore how ML can be a significant value-add to a data science pipeline. First of all, ML can potentially offer better predictions than most Stats models in terms of accuracy, F1 score, etc. Also, ML can work alongside existing models to form model ensembles that can tackle the problems more effectively. Additionally, if transparency is important to the project stakeholders, there are ML-based options for offering some insight as to what variables are important in the data at hand, for making predictions based on it. Moreover, ML is more parametrized, meaning that you can tweak an ML model more, adapting it to the data you have and ensuring more robustness (i.e., reliability). Finally, you can learn ML without needing a Math degree or any other formal training. The latter, however, may prove useful, if you wish to delve deeper into the topic and develop your own models. This innovation potential is a significant aspect of ML since it's not as easy to develop new models in Stats (unless you are an experienced Statistics researcher) or even in AI. Besides, there are a bunch of various "heuristics" that are part of the ML group of algorithms, facilitating your data science work, regardless of what predictive model you end up using. Machine Learning and AI Many people conflate ML with AI these days. This confusion is partly because many ML models involve artificial neural networks (ANNs) which are the most modern manifestation of AI. Also, many AI systems are employed in ML tasks, so they are referred to as ML systems since AI can be a bit generic as a term. However, not all ML algorithms are AI-related, nor are all AI algorithms under the ML umbrella. This distinction is of import because certain limitations of AI systems (e.g., the need for lots and lots of data) don't apply to most ML models, while AI systems tend to be more time-consuming and resource-heavy than the average ML one. There are several ML algorithms you can use without breaking the bank and derive value from your data through them. Then, if you find that you need something better, in terms of accuracy, you can explore AI-based ones. Keep in mind, however, that some ML models (e.g., Decision Trees, Random Forests, etc.) offer some transparency, while the vast majority of AI ones are black boxes. Learning more about the topic Naturally, it's hard to do this topic justice in a single article. It is so vast that someone can write a book on it! That's what I've done earlier this year, through the Technics Publications publishing house. You can learn more about this topic via this book, which is titled Julia for Machine Learning(Julia is a modern programming language used in data science, among other fields, and it's popular among various technical professionals). Feel free to check it out and explore how you can use ML in your work. Cheers!

Read More

Spotlight

ThoughtSpot

ThoughtSpot’s AI-Driven analytics platform puts the power of a thousand analysts in every business person's hands. With ThoughtSpot, you can use search to easily analyze your data or automatically get trusted insights pushed to you with a single click. ThoughtSpot connects with any on-premise, cloud, big data, or desktop data source and deploys 85 percent faster than legacy technologies. BI & Analytics teams have used ThoughtSpot to cut reporting backlogs by more than 90 percent and make more than 3 million decisions - and counting.

Events