Shaping the digital agenda to drive growth in airlines and travel

| December 28, 2017

article image
Airline and travel companies that have not yet begun their digitization journey are facing competitive disadvantage as their forward-looking competitors move to capitalize on new digital strategies and technology. Growing demand for travel is challenging current capacity. 39 out of 47 aviation megacities are constrained to meet demand.

Spotlight

Valiance Solutions

Valiance brings years of experience in successfully applying Artificial Intelligence to wide variety of business problems globally. With full stack team across machine learning, data engineering & software discipline we don't just create algorithms but ensure these get woven into your products & processes.

OTHER ARTICLES

Why Data Science Needs DataOps

Article | March 31, 2020

DataOps helps reduce the time data scientists spend preparing data for use in applications. Such tasks consume roughly 80% of their time now.We’re still hopeful that the digital transformation will provide the insights businesses need from big data. As a data scientist, you’re probably aware of the growing pressure from companies to extract meaningful insights from data and find the stories needed for impact.No matter how in-demand data science is in the employment numbers, equal pressure is rising for data scientists to deliver business value and no wonder. We’re approaching the age where data science and AI draw a line in the sand for which companies remain competitive and which ones collapse.One answer to this pressure is the rise of DataOps. Let’s take a look at what it is and how it could provide a path for data scientists to give businesses what they’ve been after.

Read More

Will We Be Able to Use AI to Prevent Further Pandemics?

Article | March 9, 2021

For many, 2021 has brought hope that they can cautiously start to prepare for a world after Covid. That includes living with the possibility of future pandemics, and starting to reflect on what has been learned from such a brutal shared experience. One of the areas that has come into its own during Covid has been artificial intelligence (AI), a technology that helped bring the pandemic under control, and allow life to continue through lockdowns and other disruptions. Plenty has been written about how AI has supported many aspects of life at work and home during Covid, from videoconferencing to online food ordering. But the role of AI in preventing Covid causing even more havoc is not necessarily as widely known. Perhaps even more importantly, little has been said about the role AI is likely to play in preparing for, responding to and even preventing future pandemics. From what we saw in 2020, AI will help prevent global outbreaks of new diseases in three ways: prediction, diagnosis and treatment. Prediction Predicting pandemics is all about tracking data that could be possible early signs that a new disease is spreading in a disturbing way. The kind of data we’re talking about includes public health information about symptoms presenting to hospitals and doctors around the world. There is already plenty of this captured in healthcare systems globally, and is consolidated into datasets such as the Johns Hopkins reports that many of us are familiar with from news briefings. Firms like Bluedot and Metabiota are part of a growing number of organisations which use AI to track both publicly available and private data and make relevant predictions about public health threats. Both of these received attention in 2020 by reporting the appearance of Covid before it had been officially acknowledged. Boston Children’s Hospital is an example of a healthcare institution doing something similar with their Healthmap resource. In addition to conventional healthcare data, AI is uniquely able to make use of informal data sources such as social media, news aggregators and discussion forums. This is because of AI techniques such as natural language processing and sentiment analysis. Firms such as Stratifyd use AI to do this in other business settings such as marketing, but also talk publicly about the use of their platform to predict and prevent pandemics. This is an example of so-called augmented intelligence, where AI is used to guide people to noteworthy data patterns, but stops short of deciding what it means, leaving that to human judgement. Another important part of preventing a pandemic is keeping track of the transmission of disease through populations and geographies. A significant issue in 2020 was difficulty tracing people who had come into contact with infection. There was some success using mobile phones for this, and AI was critical in generating useful knowledge from mobile phone data. The emphasis of Covid tracing apps in 2020 was keeping track of how the disease had already spread, but future developments are likely to be about predicting future spread patterns from such data. Prediction is a strength of AI, and the principles used to great effect in weather forecasting are similar to those used to model likely pandemic spread. Diagnosis To prevent future pandemics, it won’t be enough to predict when a disease is spreading rapidly. To make the most of this knowledge, it’s necessary to diagnose and treat cases. One of the greatest early challenges with Covid was the lack of speedy, reliable tests. For future pandemics, AI is likely to be used to create such tests more quickly than was the case in 2020. Creating a useful test involves modelling a disease’s response to different testing reagents, finding right balance between speed, convenience and accuracy. AI modelling simulates in a computer how individual cells respond to different stimuli, and could be used to perform virtual testing of many different types of test to accelerate how quickly the most promising ones reach laboratory and field trials. In 2020 there were also several novel uses of AI to diagnose Covid, but there were few national and global mechanisms to deploy these at scale. One example was the use of AI imaging, diagnosing Covid by analysing chest x-rays for features specific to Covid. This would have been especially valuable in places that didn’t have access to lab testing equipment. Another example was using AI to analyse the sound of coughs to identify unique characteristics of a Covid cough. AI research to systematically investigate innovative diagnosis techniques such as these should result in better planning for alternatives to laboratory testing. Faster and wider rollout of this kind of diagnosis would help control spread of a future disease during the critical period waiting for other tests to be developed or shared. This would be another contribution of AI to preventing a localised outbreak becoming a pandemic. Treatment Historically, vaccination has proven to be an effective tool for dealing with pandemics, and was the long term solution to Covid for most countries. AI was used to accelerate development of Covid vaccines, helping cut the development time from years or decades to months. In principle, the use of AI was similar to that described above for developing diagnostic tests. Different drug development teams used AI in different ways, but they all relied on mathematical modelling of how the Covid virus would respond to many forms of treatment at a microscopic level. Much of the vaccine research and modelling focused on the “spike” proteins that allow Covid to attack human cells and enter the body. These are also found in other viruses, and were already the subject of research before the 2020 pandemic. That research allowed scientists to quickly develop AI models to represent the spikes, and simulate the effects of different possible treatments. This was crucial in trialling thousands of possible treatments in computer models, pinpointing the most likely successes for further investigation. This kind of mathematical simulation using AI continued during drug development, and moved substantial amounts of work from the laboratory to the computer. This modelling also allowed the impact of Covid mutations on vaccines to be assessed quickly. It is why scientists were reasonably confident of developing variants of vaccines for new Covid mutations in days and weeks rather than months. As a result of the global effort to develop Covid vaccines, the body of data and knowledge about virus behaviour has grown substantially. This means it should be possible to understand new pathogens even more rapidly than Covid, potentially in hours or days rather than weeks. AI has also helped create new ways of approaching vaccine development, for example the use of pre-prepared generic vaccines designed to treat viruses from the same family as Covid. Modifying one of these to the specific features of a new virus is much faster than starting from scratch, and AI may even have already simulated exactly such a variation. AI has been involved in many parts of the fight against Covid, and we now have a much better idea than in 2020 of how to predict, diagnose and treat pandemics, especially similar viruses to Covid. So we can be cautiously optimistic that vaccine development for any future Covid-like viruses will be possible before it becomes a pandemic. Perhaps a trickier question is how well we will be able to respond if the next pandemic is from a virus that is nothing like Covid. Was Rahman is an expert in the ethics of artificial intelligence, the CEO of AI Prescience and the author of AI and Machine Learning. See more at www.wasrahman.com

Read More

CISA Keep Customer Focus in AI Adoption

Article | February 27, 2020

When it comes to adopting artificial intelligence (AI) and machine learning (ML) capabilities, it’s important to look at its range of effects from many different viewpoints.According to Senior Advisor for AI at the Cybersecurity and Infrastructure Security Agency (CISA) Martin Stanley, his agency wanted to look at adoption through three different perspectives: how CISA was going to use AI, how stakeholders will use AI, and how U.S. adversaries are going to use AI.You have to understand the needs of your stakeholders, but you also have to do it fast,” Stanley said at a Feb. 26 ServiceNow Federal Forum, adding that it’s a challenge to take in all the necessary information and deliver an outcome. AI and ML can help streamline this process. Stanley spoke about how a big percentage of the AI implementation is being purposeful in how the government’s data is managed and taking care of the data and technology is a key part to the adoption process. He also added that helping people by making work more efficient is key to why AI adoption is important saying: At the end of the day, this is all about helping people.

Read More

Soft Skills in Data Science

Article | April 29, 2021

We live in a world convulsed by new technologies and we are witnessing how more and more processes are automated in order to be executed with the same skill or even with better results than if they were carried out by a human, all this in order to be more efficient and effective. In this context the world of work is becoming increasingly competitive, because to remain employable we need to learn to manage or find a way to adapt our knowledge and skills to new technologies. With the spread of e-learning platforms and the tutorials that we can find available on the internet, acquiring new knowledge is within everyone's reach. For this reason, it is necessary to differentiate ourselves in order to stand out from other professionals, who have the hard skills similar to ours and this is precisely where Soft Skills play a very important role. What are Soft Skills? Soft skills are actually a combination of individual social skills, communication skills, personality traits, attitudes, social intelligence and emotional intelligence. Which facilitate relationships with others, making us more effective when interacting with other people. We could say that Soft Skills are the human interface that allow us to adapt to different working environments and industries. They are powerful tools for personal and professional growth. Why are Soft Skills key in our professional growth? Nowadays, standing out in the world of work is getting increasingly difficult, regardless of whether you are part of a corporation or work independently, due to the great competition within the labor market. That is why we must develop certain skills and attitudes that help us to function properly and successfully meet professional demands. Soft Skills are the point of differentiation that allows us to be selected for a position. The reason is very simple, we could be applying for a position and competing with people that are equal or even more qualified than us at a technical level, but to achieve the collaborative objectives of the company, more is required than just the technical and rational part. Also the way of communicating, values, ethics, as well as personality traits are highly valued factors since they help to drive organizations through high-performance teams, guaranteeing the achievement of their objectives. The background of the Soft Skills that we have trained throughout our lives make us unique, because it is unlikely that two people have the same combination of Soft Skills and been trained in a similar way, and that makes us more competitive against certain job opportunities where perhaps many will have the same Hard Skills, but where our Soft Skills will be the ones that will make us stand out to continue advancing in our professional career. How to sharpen our Soft Skills? To perform in any job we necessarily need to interact with other people, even if we work independently or remotely, so we must have the necessary skills that allow us to connect successfully with our teammates and stakeholders. Starting from the fact that Soft Skills are human skills, we can say that we have them pre-installed and the way to start using them (installing them) is through the experiences we undergo every day. Imagine being able to communicate assertively in your work environment and in your personal life. Master the use of tools installed in you to improve your interpersonal relationships within your work teams and reduce conflict. This would allow you to foster a healthy working environment and be able to lead any team in any environment in a strategic and effective way. Think of Soft Skills as a set of Apps that are ready to be used (like a toolbox) and that according to the experiences that are presented in our personal and / or professional lives, we are going to choose to use these applications to achieve our goals. Every time we access one of these applications, we are giving it the opportunity to collect data that will allow it to personalize its insights according to our needs and to fine-tune its effectiveness each time we use it. One of the best ways to train our Soft Skills is by leaving our comfort zone, because that will allow us to 'install' more and more Soft Skills. Another way to refine our Soft Skills is by participating in activities that involve people we do not know and even better if we involve people from other cultures, because we will achieve a beneficial exchange of experiences and knowledge for both parties that will enrich and make the training of our Soft Skills even more valuable. Some examples of activities that will enhance your Soft Skills: • Participate in competitions (e.g. Hackathons) • Found or be a lead of a community that shares your interests, and organizes small or large projects. • Organize a study group aimed at carrying out a technical or business project in order to confront professionals from various fields or industries. • Find resources and experts to help you. There are Soft Skills trainers who know useful techniques and tips to develop/sharpen your skills. • Participate in volunteer activities. You will meet new people with whom to put your Soft Skills in action. These activities will train/sharpen your leadership skills, teamwork, delegation, interpersonal communication, persuasion, etc. These are skills that we do not have as much facility to train while we are students or when we have just started working after finishing our studies, and that are required in the labor market to continue climbing in our professional career. Why do Soft Skills matter in the Data Science universe? A consequence of the use of Artificial Intelligence and Data Science is that many of the jobs that we know today will be automated and this is a matter of concern for many professionals who see their careers are in danger, but the good news is that in the future many new jobs the Soft Skills will be the main protagonists, this is what John Thompson explains us in his book "Building Analytics Teams" In other words, it is precisely our human skills that will allow us to be more employable in the future, and they will be highly requested skills because according to what the experts envision which is, that the machines will not be able to match us in this field, and that is why training our Soft Skills becomes a priority because they will allow us to be the key players of the future. On the other hand, Data Science is an interdisciplinary field where Soft Skills such as cooperation and communication are essential to achieve the goals set. Denis Rothman, author of the book "Transformers for Natural Language Processing" in an interview that I conducted, mentioned that The Human Quality is the most important thing for him when choosing the members of his work team. These are some considerations to take into account to generate a culture of cooperation: • People work harder and need less supervision, when they themselves control their work and have more freedom to choose how to do it. When they work as a team, they show greater motivation, their sense of pride increases and productivity reaches higher levels. • Solid teams that seek quality and excellence correct themselves; that is, they identify problems and correct them very quickly. Thus, they gain work experience and increase their performance. • Forming a solid and efficient work team requires patience. You need to give them time to see your results. They will have to establish procedures to complete tasks, handle administrative functions and work together efficiently, they will even have to adapt to their own decisions and accept their consequences. • A manager or team leader must recognize the team building process without expecting immediate results. The group will have to go through a learning process and this will take longer in some groups than in others. Another key component to achieving high levels of cooperation is fluid communication among team members and stakeholders. For instance defining the communication channels and the contact points in the different teams involved, guarantees the constant flow of communication during the life cycle of a Data Science project. One of the most critical moments is the presentation of the results to the stakeholders. In some cases the results of a project are not taken into consideration not so much because the expected results are not achieved, but because the way in which these results are presented are not meaningful for the stakeholders, and this, in most cases, it is due to the existence of communication barriers that is a consequence of the use of a language (terminologies) used in the technical world but not in the business world. After taking a tour of the world of Soft Skills, we can conclude by saying that Soft Skills are like superpowers that are waiting for the opportunity to be put into action, to make you a superhero or superheroine. Keep climbing positions in your professional career depends on you, on how much you use these superpowers but above all on your skills to refine them and make them available to the work team of which you are part. Don't wait any longer and start discovering your potential, start training your Soft Skills! If you want to know more about Soft Skills, I invite you to visit The Soft Skills Show

Read More

Spotlight

Valiance Solutions

Valiance brings years of experience in successfully applying Artificial Intelligence to wide variety of business problems globally. With full stack team across machine learning, data engineering & software discipline we don't just create algorithms but ensure these get woven into your products & processes.

Events