Transform USA Will Highlight All Things Data, Analytics and Digital

| July 14, 2017

article image
When a room filled with trade show organizers and suppliers gathers July 20 at the Washington Marriott at the Metro Center in Washington, D.C., for Transform USA, they will have the opportunity to take a deep dive into topics that are top of mind right now – data, analytics and digital.

Spotlight

MemSQL

MemSQL delivers the leading database platform for real-time analytics. Global enterprises use MemSQL to achieve peak performance and optimize data efficiency. With the combined power of database, data warehouse, and streaming workloads in one system, MemSQL helps companies anticipate problems before they occur, turn insights into actions, and stay relevant in a rapidly changing world.

OTHER ARTICLES

HOW TO PREPARE FOR A CAREER IN DATA SCIENCE?

Article | February 17, 2020

The continuous advancements in technology and the increasing use of smart devices are leading tremendous growth in data. Considering reports, more than 2.5 Quintilian bytes of data are generated on a daily basis and it is expected that 1.7 Mb of data will be produced every second in the near future. This is where data scientists play an influential role in analyzing these immense amounts of data to convert into meaningful insights. Data science is an overriding method today that will remain the same for the future. This drives the need for skilled talent across industries to meet the challenges of data analytics and assist delivering innovation in products, services and society.

Read More

Man Vs. Machine: Peaking into the Future of Artificial Intelligence

Article | March 15, 2021

Stephen Hawking, one of the finest minds to have ever lived, once famously said, “AI is likely to be either the best or the worst thing to happen to humanity.” This is of course true, with valid arguments both for and against the proliferation of AI. As a practitioner, I have witnessed the AI revolution at close quarters as it unfolded at breathtaking pace over the last two decades. My personal view is that there is no clear black and white in this debate. The pros and cons are very contextual – who is developing it, for what application, in what timeframe, towards what end? It always helps to understand both sides of the debate. So let’s try to take a closer look at what the naysayers say. The most common apprehensions can be clubbed into three main categories: A. Large-scale Unemployment: This is the most widely acknowledged of all the risks of AI. Technology and machines replacing humans for doing certain types of work isn’t new. We all know about entire professions dwindling, and even disappearing, due to technology. Industrial Revolution too had led to large scale job losses, although many believe that these were eventually compensated for by means of creating new avenues, lowering prices, increasing wages etc. However, a growing number of economists no longer subscribe to the belief that over a longer term, technology has positive ramifications on overall employment. In fact, multiple studies have predicted large scale job losses due to technological advancements. A 2016 UN report concluded that 75% of jobs in the developing world are expected to be replaced by machines! Unemployment, particularly at a large scale, is a very perilous thing, often resulting in widespread civil unrest. AI’s potential impact in this area therefore calls for very careful political, sociological and economic thinking, to counter it effectively. B. Singularity: The concept of Singularity is one of those things that one would have imagined seeing only in the pages of a futuristic Sci-Fi novel. However, in theory, today it is a real possibility. In a nutshell, Singularity refers to that point in human civilization when Artificial Intelligence reaches a tipping point beyond which it evolves into a superintelligence that surpasses human cognitive powers, thereby potentially posing a threat to human existence as we know it today. While the idea around this explosion of machine intelligence is a very pertinent and widely discussed topic, unlike the case of technology driven unemployment, the concept remains primarily theoretical. There is as yet no consensus amongst experts on whether this tipping point can ever really be reached in reality. C. Machine Consciousness: Unlike the previous two points, which can be regarded as risks associated with the evolution of AI, the aspect of machine consciousness perhaps is best described as an ethical conundrum. The idea deals with the possibility of implanting human-like consciousness into machines, taking them beyond the realm of ‘thinking’ to that of ‘feeling, emotions and beliefs’. It’s a complex topic and requires delving into an amalgamation of philosophy, cognitive science and neuroscience. ‘Consciousness’ itself can be interpreted in multiple ways, bringing together a plethora of attributes like self-awareness, cause-effect in mental states, memory, experiences etc. To bring machines to a state of human-like consciousness would entail replicating all the activities that happen at a neural level in a human brain – by no means a meagre task. If and when this were to be achieved, it would require a paradigm shift in the functioning of the world. Human society, as we know it, will need a major redefinition to incorporate machines with consciousness co-existing with humans. It sounds far-fetched today, but questions such as this need pondering right now, so as to be able to influence the direction in which we move when it comes to AI and machine consciousness, while things are still in the ‘design’ phase so to speak. While all of the above are pertinent questions, I believe they don’t necessarily outweigh the advantages of AI. Of course, there is a need to address them systematically, control the path of AI development and minimize adverse impact. In my opinion, the greatest and most imminent risk is actually a fourth item, not often taken into consideration, when discussing the pitfalls of AI. D. Oligarchy: Or to put it differently, the question of control. Due to the very nature of AI – it requires immense investments in technology and science – there are realistically only a handful of organizations (private or government) that can make the leap into taking AI into the mainstream, in a scalable manner, and across a vast array of applications. There is going to be very little room for small upstarts, however smart they might be, to compete at scale against these. Given the massive aspects of our lives that will likely be steered by AI enabled machines, those who control that ‘intelligence’ will hold immense power over the rest of us. That all familiar phrase ‘with great power, comes great responsibility’ will take a whole new meaning – the organizations and/or individuals that are at the forefront of the generally available AI applications would likely have more power than the most despotic autocrats in history. This is a true and real hazard, aspects of which are already becoming areas of concern in the form of discussions around things like privacy. In conclusion, AI, like all major transformative events in human history, is certain to have wide reaching ramifications. But with careful forethought these can be addressed. In the short to medium term, the advantages of AI in enhancing our lives, will likely outweigh these risks. Any major conception that touches human lives in a broad manner, if not handled properly, can pose immense danger. The best analogy I can think of is religion – when not channelled appropriately, it probably poses a greater threat than any technological advancement ever could.

Read More

How Machine Learning Can Take Data Science to a Whole New Level

Article | December 21, 2020

Introduction Machine Learning (ML) has taken strides over the past few years, establishing its place in data analytics. In particular, ML has become a cornerstone in data science, alongside data wrangling, and data visualization, among other facets of the field. Yet, we observe many organizations still hesitant when allocating a budget for it in their data pipelines. The data engineer role seems to attract lots of attention, but few companies leverage the machine learning expert/engineer. Could it be that ML can add value to other enterprises too? Let's find out by clarifying certain concepts. What Machine Learning is So that we are all on the same page, let's look at a down-to-earth definition of ML that you can include in a company meeting, a report, or even within an email to a colleague who isn't in this field. Investopedia defines ML as "the concept that a computer program can learn and adapt to new data without human intervention." In other words, if your machine (be it a computer, a smartphone, or even a smart device) can learn on its own, using some specialized software, then it's under the ML umbrella. It's important to note that ML is also a stand-alone field of research, predating most AI systems, even if the two are linked, as we'll see later on. How Machine Learning is different from Statistics It's also important to note that ML is different from Statistics, even if some people like to view the former as an extension of the latter. However, there is a fundamental difference that most people aren't aware of yet. Namely, ML is data-driven while Statistics is, for the most part, model-driven. This statement means that most Stats-based inferences are made by assuming a particular distribution in the data, or the interactions of different variables, and making predictions based on our mathematical models of these distributions. ML may employ distributions in some niche cases, but for the most part, it looks at data as-is, without making any assumptions about it. Machine Learning’s role in data science work Let’s now get to the crux of the matter and explore how ML can be a significant value-add to a data science pipeline. First of all, ML can potentially offer better predictions than most Stats models in terms of accuracy, F1 score, etc. Also, ML can work alongside existing models to form model ensembles that can tackle the problems more effectively. Additionally, if transparency is important to the project stakeholders, there are ML-based options for offering some insight as to what variables are important in the data at hand, for making predictions based on it. Moreover, ML is more parametrized, meaning that you can tweak an ML model more, adapting it to the data you have and ensuring more robustness (i.e., reliability). Finally, you can learn ML without needing a Math degree or any other formal training. The latter, however, may prove useful, if you wish to delve deeper into the topic and develop your own models. This innovation potential is a significant aspect of ML since it's not as easy to develop new models in Stats (unless you are an experienced Statistics researcher) or even in AI. Besides, there are a bunch of various "heuristics" that are part of the ML group of algorithms, facilitating your data science work, regardless of what predictive model you end up using. Machine Learning and AI Many people conflate ML with AI these days. This confusion is partly because many ML models involve artificial neural networks (ANNs) which are the most modern manifestation of AI. Also, many AI systems are employed in ML tasks, so they are referred to as ML systems since AI can be a bit generic as a term. However, not all ML algorithms are AI-related, nor are all AI algorithms under the ML umbrella. This distinction is of import because certain limitations of AI systems (e.g., the need for lots and lots of data) don't apply to most ML models, while AI systems tend to be more time-consuming and resource-heavy than the average ML one. There are several ML algorithms you can use without breaking the bank and derive value from your data through them. Then, if you find that you need something better, in terms of accuracy, you can explore AI-based ones. Keep in mind, however, that some ML models (e.g., Decision Trees, Random Forests, etc.) offer some transparency, while the vast majority of AI ones are black boxes. Learning more about the topic Naturally, it's hard to do this topic justice in a single article. It is so vast that someone can write a book on it! That's what I've done earlier this year, through the Technics Publications publishing house. You can learn more about this topic via this book, which is titled Julia for Machine Learning(Julia is a modern programming language used in data science, among other fields, and it's popular among various technical professionals). Feel free to check it out and explore how you can use ML in your work. Cheers!

Read More

Here’s How Analytics are Transforming the Marketing Industry

Article | July 13, 2021

When it comes to marketing today, big data analytics has become a powerful being. The raw material marketers need to make sense of the information they are presented with so they can do their jobs with accuracy and excellence. Big data is what empowers marketers to understand their customers based on any online action they take. Thanks to the boom of big data, marketers have learned more about new marketing trends and preferences, and behaviors of the consumer. For example, marketers know what their customers are streaming to what groceries they are ordering, thanks to big data. Data is readily available in abundance due to digital technology. Data is created through mobile phones, social media, digital ads, weblogs, electronic devices, and sensors attached through the internet of things (IoT). Data analytics helps organizations discover newer markets, learn how new customers interact with online ads, and draw conclusions and effects of new strategies. Newer sophisticated marketing analytics software and analytics tools are now being used to determine consumers’ buying patterns and key influencers in decision-making and validate data marketing approaches that yield the best results. With the integration of product management with data science, real-time data capture, and analytics, big data analytics is helping companies increase sales and improve the customer experience. In this article, we will examine how big data analytics are transforming the marketing industry. Personalized Marketing Personalized Marketing has taken an essential place in direct marketing to the consumers. Greeting consumers with their first name whenever they visit the website, sending them promotional emails of their favorite products, or notifying them with personalized recipes based on their grocery shopping are some of the examples of data-driven marketing. When marketers collect critical data marketing pieces about customers at different marketing touchpoints such as their interests, their name, what they like to listen to, what they order most, what they’d like to hear about, and who they want to hear from, this enables marketers to plan their campaigns strategically. Marketers aim for churn prevention and onboarding new customers. With customer’s marketing touchpoints, these insights can be used to improve acquisition rates, drive brand loyalty, increase revenue per customer, and improve the effectiveness of products and services. With these data marketing touchpoints, marketers can build an ideal customer profile. Furthermore, these customer profiles can help them strategize and execute personalized campaigns accordingly. Predictive Analytics Customer behavior can be traced by historical data, which is the best way to predict how customers would behave in the future. It allows companies to correctly predict which customers are interested in their products at the right time and place. Predictive analytics applies data mining, statistical techniques, machine learning, and artificial intelligence for data analysis and predict the customer’s future behavior and activities. Take an example of an online grocery store. If a customer tends to buy healthy and sugar-free snacks from the store now, they will keep buying it in the future too. This predictable behavior from the customer makes it easy for brands to capitalize on that and has been made easy by analytics tools. They can automate their sales and target the said customer. What they would be doing gives the customer chances to make “repeat purchases” based on their predictive behavior. Marketers can also suggest customers purchase products related to those repeat purchases to get them on board with new products. Customer Segmentation Customer segmentation means dividing your customers into strata to identify a specific pattern. For example, customers from a particular city may buy your products more than others, or customers from a certain age demographic prefer some products more than other age demographics. Specific marketing analytics software can help you segment your audience. For example, you can gather data like specific interests, how many times they have visited a place, unique preferences, and demographics such as age, gender, work, and home location. These insights are a golden opportunity for marketers to create bold campaigns optimizing their return on investment. They can cluster customers into specific groups and target these segments with highly relevant data marketing campaigns. The main goal of customer segmentation is to identify any interesting information that can help them increase revenue and meet their goals. Effective customer segmentation can help marketers with: • Identifying most profitable and least profitable customers • Building loyal relationships • Predicting customer patterns • Pricing products accordingly • Developing products based on their interests Businesses continue to invest in collecting high-quality data for perfect customer segmentation, which results in successful efforts. Optimized Ad Campaigns Customers’ social media data like Facebook, LinkedIn, and Twitter makes it easier for marketers to create customized ad campaigns on a larger scale. This means that they can create specific ad campaigns for particular groups and successfully execute an ad campaign. Big data also makes it easier for marketers to run ‘remarketing’ campaigns. Remarketing campaigns ads follow your customers online, wherever they browse, once they have visited your website. Execution of an online ad campaign makes all the difference in its success. Chasing customers with paid ads can work as an effective strategy if executed well. According to the rule 7, prospective customers need to be exposed to an ad minimum of seven times before they make any move on it. When creating online ad campaigns, do keep one thing in mind. Your customers should not feel as if they are being stalked when you make any remarketing campaigns. Space out your ads and their exposure, so they appear naturally rather than coming on as pushy. Consumer Impact Advancements in data science have vastly impacted consumers. Every move they make online is saved and measured. In addition, websites now use cookies to store consumer data, so whenever these consumers visit these websites, product lists based on their shopping habits pop up on the site. Search engines and social media data enhance this. This data can be used to analyze their behavior patterns and market to them accordingly. The information gained from search engines and social media can be used to influence consumers into staying loyal and help their businesses benefit from the same. These implications can be frightening, like seeing personalized ads crop up on their Facebook page or search engine. However, when consumer data is so openly available to marketers, they need to use it wisely and safeguard it from falling into the wrong hands. Fortunately, businesses are taking note and making sure that this information remains secure. Conclusion The future of marketing because of big data and analytics seems bright and optimistic. Businesses are collecting high-quality data in real-time and analyzing it with the help of machine learning and AI; the marketing world seems to be up for massive changes. Analytics are transforming marketing industry to a different level. And with sophisticated marketers behind the wheel, the sky is the only limit. Frequently Asked Questions Why is marketing analytics so important these days? Marketing analytics helps us see how everything plays off each other, and decide how we might want to invest moving forward. Re-prioritizing how you spend your time, how you build out your team, and the resources you invest in channels and efforts are critical steps to achieving marketing team success. What is the use of marketing analytics? Marketing analytics is used to measure how well your marketing efforts are performing and to determine what can be done differently to get better results across marketing channels. Which companies use marketing analytics? Marketing analytics enables you to improve your overall marketing program performance by identifying channel deficiencies, adjusting strategies and tactics as needed, optimizing processes, etc. Companies like Netflix, Sephora, EasyJet, and Spotify use marketing analytics to improve their markeitng performance as well. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is marketing analytics so important these days?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics helps us see how everything plays off each other, and decide how we might want to invest moving forward. Re-prioritizing how you spend your time, how you build out your team and the resources you invest in channels and efforts are critical steps to achieving marketing team success" } },{ "@type": "Question", "name": "What is the use of marketing analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics is used to measure how well your marketing efforts are performing and to determine what can be done differently to get better results across marketing channels." } },{ "@type": "Question", "name": "Which companies use marketing analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics enables you to improve your overall marketing program performance by identifying channel deficiencies, adjusting strategies and tactics as needed, optimizing processes, etc. Companies like Netflix, Sephora, EasyJet, and Spotify use marketing analytics to improve their markeitng performance as well." } }] }

Read More

Spotlight

MemSQL

MemSQL delivers the leading database platform for real-time analytics. Global enterprises use MemSQL to achieve peak performance and optimize data efficiency. With the combined power of database, data warehouse, and streaming workloads in one system, MemSQL helps companies anticipate problems before they occur, turn insights into actions, and stay relevant in a rapidly changing world.

Events