Understanding Apache Hadoop: What is Hadoop?

| April 13, 2017

article image
Since 2006, Apache Hadoop has been a frontrunner in the big data world. Its data collection, storage, and analytical abilities have been instrumental in the rise of the Internet of Things (IoT), which delivers ever-increasing amounts of data from a myriad of sources both inside and outside of the enterprise. Apache Hadoop platforms serve as the basis of next-generation data platforms and data applications, augmenting existing data warehouses for organizations of all sizes, from internet giants such as Facebook and Twitter to Fortune 500 companies such as Kaiser Permanente and Procter & Gamble, to fledgling startups.

Spotlight

SwiftERM - Predictive Analytics for Ecommerce

SwiftERM is the predictive analytics application specifically for ecommerce. It’s a simple proposition; identify the products each individual consumer will buy next and when, then send them details of those items at precisely the right moment. We offer a 30-day free trial to validate our assurances. We nurture otherwise untapped revenue from your existing customers by predicting their needs, wants and desires, identified through their buying history and live impressions. We can predict imminent sales extremely accurately, sometimes to 98%. This unparalleled degree of accuracy works 24/7 and is totally automatic. We supplement all professional marketing strategies, compliment and integrate easily.

OTHER ARTICLES

How Should Data Science Teams Deal with Operational Tasks?

Article | April 16, 2021

Introduction There are many articles explaining advanced methods on AI, Machine Learning or Reinforcement Learning. Yet, when it comes to real life, data scientists often have to deal with smaller, operational tasks, that are not necessarily at the edge of science, such as building simple SQL queries to generate lists of email addresses to target for CRM campaigns. In theory, these tasks should be assigned to someone more suited, such as Business Analysts or Data Analysts, but it is not always the case that the company has people dedicated specifically to those tasks, especially if it’s a smaller structure. In some cases, these activities might consume so much of our time that we don’t have much left for the stuff that matters, and might end up doing a less than optimal work in both. That said, how should we deal with those tasks? In one hand, not only we usually don’t like doing operational tasks, but they are also a bad use of an expensive professional. On the other hand, someone has to do them, and not everyone has the necessary SQL knowledge for it. Let’s see some ways in which you can deal with them in order to optimize your team’s time. Reduce The first and most obvious way of doing less operational tasks is by simply refusing to do them. I know it sounds harsh, and it might be impractical depending on your company and its hierarchy, but it’s worth trying it in some cases. By “refusing”, I mean questioning if that task is really necessary, and trying to find best ways of doing it. Let’s say that every month you have to prepare 3 different reports, for different areas, that contain similar information. You have managed to automate the SQL queries, but you still have to double check the results and eventually add/remove some information upon the user’s request or change something in the charts layout. In this example, you could see if all of the 3 different reports are necessary, or if you could adapt them so they become one report that you send to the 3 different users. Anyways, think of ways through which you can reduce the necessary time for those tasks or, ideally, stop performing them at all. Empower Sometimes it can pay to take the time to empower your users to perform some of those tasks themselves. If there is a specific team that demands most of the operational tasks, try encouraging them to use no-code tools, putting it in a way that they fell they will be more autonomous. You can either use already existing solutions or develop them in-house (this could be a great learning opportunity to develop your data scientists’ app-building skills). Automate If you notice it’s a task that you can’t get rid of and can’t delegate, then try to automate it as much as possible. For reports, try to migrate them to a data visualization tool such as Tableau or Google Data Studio and synchronize them with your database. If it’s related to ad hoc requests, try to make your SQL queries as flexible as possible, with variable dates and names, so that you don’t have to re-write them every time. Organize Especially when you are a manager, you have to prioritize, so you and your team don’t get drowned in the endless operational tasks. In order to do this, set aside one or two days in your week which you will assign to that kind of work, and don’t look at it in the remaining 3–4 days. To achieve this, you will have to adapt your workload by following the previous steps and also manage expectations by taking this smaller amount of work hours when setting deadlines. This also means explaining the paradigm shift to your internal clients, so they can adapt to these new deadlines. This step might require some internal politics, negotiating with your superiors and with other departments. Conclusion Once you have mapped all your operational activities, you start by eliminating as much as possible from your pipeline, first by getting rid of unnecessary activities for good, then by delegating them to the teams that request them. Then, whatever is left for you to do, you automate and organize, to make sure you are making time for the relevant work your team has to do. This way you make sure expensive employees’ time is being well spent, maximizing company’s profit.

Read More

The importance of Big Data in the Food Industry Strategies and best practices

Article | March 5, 2020

Do you know the real importance of Big Data in the Food Industry? Knowing your audience is important, even fundamental for any kind of business. In this article we will analyze the best practices and the best data-driven strategies (marketing, but not only) for the food industry. Food and Beverage is a large and complex sector that embraces a number of very different players, some of whom are interconnected. The ecosystem includes both small producers and large multinational brands, players who cater to everyone and those who target a specific niche; then there are the distributors, clubs, restaurants both small and large, and retail chains.

Read More

Choosing External Data Sources: 4 Characteristics to Look For

Article | May 12, 2021

Decision-makers at consumer brands are finally realizing the full transformative potential of external data - but they’re also realizing how difficult it is to source. Forrester reports that 87% of decision-makers in data and analytics have implemented or are planning initiatives to source more external data. And those initiatives are growing outside of the IT team; 29% of those surveyed say that IT has primary ownership of data sourcing, down from 37% in 2016. To support these projects, organizations are increasingly turning to a new specialist: the data hunter, who identifies and vets external data sources. It’s a lot of work to build external data-focused teams, and many leaders are realizing that external data is difficult to scale as the source list grows. Perhaps that’s why 66% of those decision-makers surveyed by Forrester report that they’re using or planning to use external service providers for data, analytics, and insights.

Read More

WHY IT’S TIME FOR BUSINESS LEADERS AND DATA SCIENTISTS TO COME TOGETHER

Article | March 21, 2020

In today’s digital revolution, the realm of data is growing at an unprecedented rate and will continue to rise as businesses will leverage more smart technologies or devices. However, maintaining and processing these myriad amounts of data require massive computing power and the knowledge to use it. Moreover, companies these days are utilizing data to make data-driven decisions and this pursuit of data-driven decision-making can make them to seek out data science.

Read More

Spotlight

SwiftERM - Predictive Analytics for Ecommerce

SwiftERM is the predictive analytics application specifically for ecommerce. It’s a simple proposition; identify the products each individual consumer will buy next and when, then send them details of those items at precisely the right moment. We offer a 30-day free trial to validate our assurances. We nurture otherwise untapped revenue from your existing customers by predicting their needs, wants and desires, identified through their buying history and live impressions. We can predict imminent sales extremely accurately, sometimes to 98%. This unparalleled degree of accuracy works 24/7 and is totally automatic. We supplement all professional marketing strategies, compliment and integrate easily.

Events