Welcome to OLAP on Hadoop: The cube meets the elephant

KRISHNA ROY | July 16, 2015

article image
OLAP cubes first rose to prominence in the 1990s, so they can be seen as one of the first pervasive forms of analytical visualization, enabling a dataset to be depicted in a multi-dimensional manner in a cube format, for slicing and dicing.

Spotlight

Rigel Networks

Rigel Networks is an established End to End IT Service Company with 10+ years of experience. Our clients include Independent Software Vendors, Tech Start-Ups and Small & Mid-Size Companies from several verticals including Hospitality, Home Health Care, Retail, Construction & Roofing.

OTHER ARTICLES

Soft Skills in Data Science

Article | April 29, 2021

We live in a world convulsed by new technologies and we are witnessing how more and more processes are automated in order to be executed with the same skill or even with better results than if they were carried out by a human, all this in order to be more efficient and effective. In this context the world of work is becoming increasingly competitive, because to remain employable we need to learn to manage or find a way to adapt our knowledge and skills to new technologies. With the spread of e-learning platforms and the tutorials that we can find available on the internet, acquiring new knowledge is within everyone's reach. For this reason, it is necessary to differentiate ourselves in order to stand out from other professionals, who have the hard skills similar to ours and this is precisely where Soft Skills play a very important role. What are Soft Skills? Soft skills are actually a combination of individual social skills, communication skills, personality traits, attitudes, social intelligence and emotional intelligence. Which facilitate relationships with others, making us more effective when interacting with other people. We could say that Soft Skills are the human interface that allow us to adapt to different working environments and industries. They are powerful tools for personal and professional growth. Why are Soft Skills key in our professional growth? Nowadays, standing out in the world of work is getting increasingly difficult, regardless of whether you are part of a corporation or work independently, due to the great competition within the labor market. That is why we must develop certain skills and attitudes that help us to function properly and successfully meet professional demands. Soft Skills are the point of differentiation that allows us to be selected for a position. The reason is very simple, we could be applying for a position and competing with people that are equal or even more qualified than us at a technical level, but to achieve the collaborative objectives of the company, more is required than just the technical and rational part. Also the way of communicating, values, ethics, as well as personality traits are highly valued factors since they help to drive organizations through high-performance teams, guaranteeing the achievement of their objectives. The background of the Soft Skills that we have trained throughout our lives make us unique, because it is unlikely that two people have the same combination of Soft Skills and been trained in a similar way, and that makes us more competitive against certain job opportunities where perhaps many will have the same Hard Skills, but where our Soft Skills will be the ones that will make us stand out to continue advancing in our professional career. How to sharpen our Soft Skills? To perform in any job we necessarily need to interact with other people, even if we work independently or remotely, so we must have the necessary skills that allow us to connect successfully with our teammates and stakeholders. Starting from the fact that Soft Skills are human skills, we can say that we have them pre-installed and the way to start using them (installing them) is through the experiences we undergo every day. Imagine being able to communicate assertively in your work environment and in your personal life. Master the use of tools installed in you to improve your interpersonal relationships within your work teams and reduce conflict. This would allow you to foster a healthy working environment and be able to lead any team in any environment in a strategic and effective way. Think of Soft Skills as a set of Apps that are ready to be used (like a toolbox) and that according to the experiences that are presented in our personal and / or professional lives, we are going to choose to use these applications to achieve our goals. Every time we access one of these applications, we are giving it the opportunity to collect data that will allow it to personalize its insights according to our needs and to fine-tune its effectiveness each time we use it. One of the best ways to train our Soft Skills is by leaving our comfort zone, because that will allow us to 'install' more and more Soft Skills. Another way to refine our Soft Skills is by participating in activities that involve people we do not know and even better if we involve people from other cultures, because we will achieve a beneficial exchange of experiences and knowledge for both parties that will enrich and make the training of our Soft Skills even more valuable. Some examples of activities that will enhance your Soft Skills: • Participate in competitions (e.g. Hackathons) • Found or be a lead of a community that shares your interests, and organizes small or large projects. • Organize a study group aimed at carrying out a technical or business project in order to confront professionals from various fields or industries. • Find resources and experts to help you. There are Soft Skills trainers who know useful techniques and tips to develop/sharpen your skills. • Participate in volunteer activities. You will meet new people with whom to put your Soft Skills in action. These activities will train/sharpen your leadership skills, teamwork, delegation, interpersonal communication, persuasion, etc. These are skills that we do not have as much facility to train while we are students or when we have just started working after finishing our studies, and that are required in the labor market to continue climbing in our professional career. Why do Soft Skills matter in the Data Science universe? A consequence of the use of Artificial Intelligence and Data Science is that many of the jobs that we know today will be automated and this is a matter of concern for many professionals who see their careers are in danger, but the good news is that in the future many new jobs the Soft Skills will be the main protagonists, this is what John Thompson explains us in his book "Building Analytics Teams" In other words, it is precisely our human skills that will allow us to be more employable in the future, and they will be highly requested skills because according to what the experts envision which is, that the machines will not be able to match us in this field, and that is why training our Soft Skills becomes a priority because they will allow us to be the key players of the future. On the other hand, Data Science is an interdisciplinary field where Soft Skills such as cooperation and communication are essential to achieve the goals set. Denis Rothman, author of the book "Transformers for Natural Language Processing" in an interview that I conducted, mentioned that The Human Quality is the most important thing for him when choosing the members of his work team. These are some considerations to take into account to generate a culture of cooperation: • People work harder and need less supervision, when they themselves control their work and have more freedom to choose how to do it. When they work as a team, they show greater motivation, their sense of pride increases and productivity reaches higher levels. • Solid teams that seek quality and excellence correct themselves; that is, they identify problems and correct them very quickly. Thus, they gain work experience and increase their performance. • Forming a solid and efficient work team requires patience. You need to give them time to see your results. They will have to establish procedures to complete tasks, handle administrative functions and work together efficiently, they will even have to adapt to their own decisions and accept their consequences. • A manager or team leader must recognize the team building process without expecting immediate results. The group will have to go through a learning process and this will take longer in some groups than in others. Another key component to achieving high levels of cooperation is fluid communication among team members and stakeholders. For instance defining the communication channels and the contact points in the different teams involved, guarantees the constant flow of communication during the life cycle of a Data Science project. One of the most critical moments is the presentation of the results to the stakeholders. In some cases the results of a project are not taken into consideration not so much because the expected results are not achieved, but because the way in which these results are presented are not meaningful for the stakeholders, and this, in most cases, it is due to the existence of communication barriers that is a consequence of the use of a language (terminologies) used in the technical world but not in the business world. After taking a tour of the world of Soft Skills, we can conclude by saying that Soft Skills are like superpowers that are waiting for the opportunity to be put into action, to make you a superhero or superheroine. Keep climbing positions in your professional career depends on you, on how much you use these superpowers but above all on your skills to refine them and make them available to the work team of which you are part. Don't wait any longer and start discovering your potential, start training your Soft Skills! If you want to know more about Soft Skills, I invite you to visit The Soft Skills Show

Read More

Taking a qualitative approach to a data-driven market

Article | February 18, 2021

While digital transformation is proving to have many benefits for businesses, what is perhaps the most significant, is the vast amount of data there is available. And now, with an increasing number of businesses turning their focus to online, there is even more to be collected on competitors and markets than ever before. Having all this information to hand may seem like any business owner’s dream, as they can now make insightful and informed commercial decisions based on what others are doing, what customers want and where markets are heading. But according to Nate Burke, CEO of Diginius, a propriety software and solutions provider for ecommerce businesses, data should not be all a company relies upon when making important decisions. Instead, there is a line to be drawn on where data is required and where human expertise and judgement can provide greater value. Undeniably, the power of data is unmatched. With an abundance of data collection opportunities available online, and with an increasing number of businesses taking them, the potential and value of such information is richer than ever before. And businesses are benefiting. Particularly where data concerns customer behaviour and market patterns. For instance, over the recent Christmas period, data was clearly suggesting a preference for ecommerce, with marketplaces such as Amazon leading the way due to greater convenience and price advantages. Businesses that recognised and understood the trend could better prepare for the digital shopping season, placing greater emphasis on their online marketing tactics to encourage purchases and allocating resources to ensure product availability and on-time delivery. While on the other hand, businesses who ignored, or simply did not utilise the information available to them, would have been left with overstocked shops and now, out of season items that would have to be heavily discounted or worse, disposed of. Similarly, search and sales data can be used to understand changing consumer needs, and consequently, what items businesses should be ordering, manufacturing, marketing and selling for the best returns. For instance, understandably, in 2020, DIY was at its peak, with increases in searches for “DIY facemasks”, “DIY decking” and “DIY garden ideas”. For those who had recognised the trend early on, they had the chance to shift their offerings and marketing in accordance, in turn really reaping the rewards. So, paying attention to data certainly does pay off. And thanks to smarter and more sophisticated ways of collecting data online, such as cookies, and through AI and machine learning technologies, the value and use of such information is only likely to increase. The future, therefore, looks bright. But even with all this potential at our fingertips, there are a number of issues businesses may face if their approach relies entirely on a data and insight-driven approach. Just like disregarding its power and potential can be damaging, so can using it as the sole basis upon which important decisions are based. Human error While the value of data for understanding the market and consumer patterns is undeniable, its value is only as rich as the quality of data being inputted. So, if businesses are collecting and analysing their data on their own activity, and then using this to draw meaningful insight, there should be strong focus on the data gathering phase, with attention given to what needs to be collected, why it should be collected, how it will be collected, and whether in fact this is an accurate representation of what it is you are trying to monitor or measure. Human error can become an issue when this is done by individuals or teams who do not completely understand the numbers and patterns they are seeing. There is also an obstacle presented when there are various channels and platforms which are generating leads or sales for the business. In this case, any omission can skew results and provide an inaccurate picture. So, when used in decision making, there is the possibility of ineffective and unsuccessful changes. But while data gathering becomes more and more autonomous, the possibility of human error is lessened. Although, this may add fuel to the next issue. Drawing a line The benefits of data and insights are clear, particularly as the tasks of collection and analysis become less of a burden for businesses and their people thanks to automation and AI advancements. But due to how effortless data collection and analysis is becoming, we can only expect more businesses to be doing it, meaning its ability to offer each individual company something unique is also being lessened. So, businesses need to look elsewhere for their edge. And interestingly, this is where a line should be drawn and human judgement should be used in order to set them apart from the competition and differentiate from what everyone else is doing. It makes perfect sense when you think about it. Your business is unique for a number of reasons, but mainly because of the brand, its values, reputation and perceptions of the services you are upheld by. And it’s usually these aspects that encourage consumers to choose your business rather than a competitor. But often, these intangible aspects are much more difficult to measure and monitor through data collection and analysis, especially in the autonomous, number-driven format that many platforms utilise. Here then, there is a great case for businesses to use their own judgements, expertise and experiences to determine what works well and what does not. For instance, you can begin to determine consumer perceptions towards a change in your product or services, which quantitative data may not be able to pick up until much later when sales figures begin to rise or fall. And while the data will eventually pick it up, it might not necessarily be able to help you decide on what an appropriate alternative solution may be, should the latter occur. Human judgement, however, can listen to and understand qualitative feedback and consumer sentiments which can often provide much more meaningful insights for businesses to base their decisions on. So, when it comes to competitor analysis, using insights generated from figure-based data sets and performance metrics is key to ensuring you are doing the same as the competition. But if you are looking to get ahead, you may want to consider taking a human approach too.

Read More

Forward-thinking Business And The Implications Of Big Data

Article | March 23, 2020

Big data is a modern phenomenon transforming businesses of today. Organisations hold vast swathes of data, from historic and current orders to detailed insights about supply chain operations. This information, combined with external data such as market intelligence and even weather patterns, can provide businesses with a foundation on which to base their planning and decision-making. Business intelligence and analytical solutions pull valuable insights from huge datasets. From workforce optimisation to cost management, access to big data and the tools that manage and evaluate it allows firms to streamline key parts of their business. Adopters of modern solutions are seeing vast improvements in all areas of the company.

Read More

Here’s How Analytics are Transforming the Marketing Industry

Article | July 13, 2021

When it comes to marketing today, big data analytics has become a powerful being. The raw material marketers need to make sense of the information they are presented with so they can do their jobs with accuracy and excellence. Big data is what empowers marketers to understand their customers based on any online action they take. Thanks to the boom of big data, marketers have learned more about new marketing trends and preferences, and behaviors of the consumer. For example, marketers know what their customers are streaming to what groceries they are ordering, thanks to big data. Data is readily available in abundance due to digital technology. Data is created through mobile phones, social media, digital ads, weblogs, electronic devices, and sensors attached through the internet of things (IoT). Data analytics helps organizations discover newer markets, learn how new customers interact with online ads, and draw conclusions and effects of new strategies. Newer sophisticated marketing analytics software and analytics tools are now being used to determine consumers’ buying patterns and key influencers in decision-making and validate data marketing approaches that yield the best results. With the integration of product management with data science, real-time data capture, and analytics, big data analytics is helping companies increase sales and improve the customer experience. In this article, we will examine how big data analytics are transforming the marketing industry. Personalized Marketing Personalized Marketing has taken an essential place in direct marketing to the consumers. Greeting consumers with their first name whenever they visit the website, sending them promotional emails of their favorite products, or notifying them with personalized recipes based on their grocery shopping are some of the examples of data-driven marketing. When marketers collect critical data marketing pieces about customers at different marketing touchpoints such as their interests, their name, what they like to listen to, what they order most, what they’d like to hear about, and who they want to hear from, this enables marketers to plan their campaigns strategically. Marketers aim for churn prevention and onboarding new customers. With customer’s marketing touchpoints, these insights can be used to improve acquisition rates, drive brand loyalty, increase revenue per customer, and improve the effectiveness of products and services. With these data marketing touchpoints, marketers can build an ideal customer profile. Furthermore, these customer profiles can help them strategize and execute personalized campaigns accordingly. Predictive Analytics Customer behavior can be traced by historical data, which is the best way to predict how customers would behave in the future. It allows companies to correctly predict which customers are interested in their products at the right time and place. Predictive analytics applies data mining, statistical techniques, machine learning, and artificial intelligence for data analysis and predict the customer’s future behavior and activities. Take an example of an online grocery store. If a customer tends to buy healthy and sugar-free snacks from the store now, they will keep buying it in the future too. This predictable behavior from the customer makes it easy for brands to capitalize on that and has been made easy by analytics tools. They can automate their sales and target the said customer. What they would be doing gives the customer chances to make “repeat purchases” based on their predictive behavior. Marketers can also suggest customers purchase products related to those repeat purchases to get them on board with new products. Customer Segmentation Customer segmentation means dividing your customers into strata to identify a specific pattern. For example, customers from a particular city may buy your products more than others, or customers from a certain age demographic prefer some products more than other age demographics. Specific marketing analytics software can help you segment your audience. For example, you can gather data like specific interests, how many times they have visited a place, unique preferences, and demographics such as age, gender, work, and home location. These insights are a golden opportunity for marketers to create bold campaigns optimizing their return on investment. They can cluster customers into specific groups and target these segments with highly relevant data marketing campaigns. The main goal of customer segmentation is to identify any interesting information that can help them increase revenue and meet their goals. Effective customer segmentation can help marketers with: • Identifying most profitable and least profitable customers • Building loyal relationships • Predicting customer patterns • Pricing products accordingly • Developing products based on their interests Businesses continue to invest in collecting high-quality data for perfect customer segmentation, which results in successful efforts. Optimized Ad Campaigns Customers’ social media data like Facebook, LinkedIn, and Twitter makes it easier for marketers to create customized ad campaigns on a larger scale. This means that they can create specific ad campaigns for particular groups and successfully execute an ad campaign. Big data also makes it easier for marketers to run ‘remarketing’ campaigns. Remarketing campaigns ads follow your customers online, wherever they browse, once they have visited your website. Execution of an online ad campaign makes all the difference in its success. Chasing customers with paid ads can work as an effective strategy if executed well. According to the rule 7, prospective customers need to be exposed to an ad minimum of seven times before they make any move on it. When creating online ad campaigns, do keep one thing in mind. Your customers should not feel as if they are being stalked when you make any remarketing campaigns. Space out your ads and their exposure, so they appear naturally rather than coming on as pushy. Consumer Impact Advancements in data science have vastly impacted consumers. Every move they make online is saved and measured. In addition, websites now use cookies to store consumer data, so whenever these consumers visit these websites, product lists based on their shopping habits pop up on the site. Search engines and social media data enhance this. This data can be used to analyze their behavior patterns and market to them accordingly. The information gained from search engines and social media can be used to influence consumers into staying loyal and help their businesses benefit from the same. These implications can be frightening, like seeing personalized ads crop up on their Facebook page or search engine. However, when consumer data is so openly available to marketers, they need to use it wisely and safeguard it from falling into the wrong hands. Fortunately, businesses are taking note and making sure that this information remains secure. Conclusion The future of marketing because of big data and analytics seems bright and optimistic. Businesses are collecting high-quality data in real-time and analyzing it with the help of machine learning and AI; the marketing world seems to be up for massive changes. Analytics are transforming marketing industry to a different level. And with sophisticated marketers behind the wheel, the sky is the only limit. Frequently Asked Questions Why is marketing analytics so important these days? Marketing analytics helps us see how everything plays off each other, and decide how we might want to invest moving forward. Re-prioritizing how you spend your time, how you build out your team, and the resources you invest in channels and efforts are critical steps to achieving marketing team success. What is the use of marketing analytics? Marketing analytics is used to measure how well your marketing efforts are performing and to determine what can be done differently to get better results across marketing channels. Which companies use marketing analytics? Marketing analytics enables you to improve your overall marketing program performance by identifying channel deficiencies, adjusting strategies and tactics as needed, optimizing processes, etc. Companies like Netflix, Sephora, EasyJet, and Spotify use marketing analytics to improve their markeitng performance as well. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is marketing analytics so important these days?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics helps us see how everything plays off each other, and decide how we might want to invest moving forward. Re-prioritizing how you spend your time, how you build out your team and the resources you invest in channels and efforts are critical steps to achieving marketing team success" } },{ "@type": "Question", "name": "What is the use of marketing analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics is used to measure how well your marketing efforts are performing and to determine what can be done differently to get better results across marketing channels." } },{ "@type": "Question", "name": "Which companies use marketing analytics?", "acceptedAnswer": { "@type": "Answer", "text": "Marketing analytics enables you to improve your overall marketing program performance by identifying channel deficiencies, adjusting strategies and tactics as needed, optimizing processes, etc. Companies like Netflix, Sephora, EasyJet, and Spotify use marketing analytics to improve their markeitng performance as well." } }] }

Read More

Spotlight

Rigel Networks

Rigel Networks is an established End to End IT Service Company with 10+ years of experience. Our clients include Independent Software Vendors, Tech Start-Ups and Small & Mid-Size Companies from several verticals including Hospitality, Home Health Care, Retail, Construction & Roofing.

Events