What Impact is Big Data Having on Healthcare?

| September 28, 2018

article image
The growth of big data is changing every sector of our society. But what are the ethical risks and rewards of incorporating big data into the healthcare landscape? During our free event and livestream on October 24-25, 2018, we'll be exploring these questions and more. This symposium is co-presented by the New York Academy of Sciences and the NYU School of Medicine, and sponsored by Johnson & Johnson.

Spotlight

Actifio

Actifio virtualizes the data that’s the lifeblood of businesses in more than 30 countries around the world. Its Virtual Data Pipeline™ technology enables businesses to manage, access, and protect their data faster, more efficiently, and more simply by decoupling data from physical storage, much the same way a hypervisor decouples compute from physical servers.

OTHER ARTICLES

Will We Be Able to Use AI to Prevent Further Pandemics?

Article | March 9, 2021

For many, 2021 has brought hope that they can cautiously start to prepare for a world after Covid. That includes living with the possibility of future pandemics, and starting to reflect on what has been learned from such a brutal shared experience. One of the areas that has come into its own during Covid has been artificial intelligence (AI), a technology that helped bring the pandemic under control, and allow life to continue through lockdowns and other disruptions. Plenty has been written about how AI has supported many aspects of life at work and home during Covid, from videoconferencing to online food ordering. But the role of AI in preventing Covid causing even more havoc is not necessarily as widely known. Perhaps even more importantly, little has been said about the role AI is likely to play in preparing for, responding to and even preventing future pandemics. From what we saw in 2020, AI will help prevent global outbreaks of new diseases in three ways: prediction, diagnosis and treatment. Prediction Predicting pandemics is all about tracking data that could be possible early signs that a new disease is spreading in a disturbing way. The kind of data we’re talking about includes public health information about symptoms presenting to hospitals and doctors around the world. There is already plenty of this captured in healthcare systems globally, and is consolidated into datasets such as the Johns Hopkins reports that many of us are familiar with from news briefings. Firms like Bluedot and Metabiota are part of a growing number of organisations which use AI to track both publicly available and private data and make relevant predictions about public health threats. Both of these received attention in 2020 by reporting the appearance of Covid before it had been officially acknowledged. Boston Children’s Hospital is an example of a healthcare institution doing something similar with their Healthmap resource. In addition to conventional healthcare data, AI is uniquely able to make use of informal data sources such as social media, news aggregators and discussion forums. This is because of AI techniques such as natural language processing and sentiment analysis. Firms such as Stratifyd use AI to do this in other business settings such as marketing, but also talk publicly about the use of their platform to predict and prevent pandemics. This is an example of so-called augmented intelligence, where AI is used to guide people to noteworthy data patterns, but stops short of deciding what it means, leaving that to human judgement. Another important part of preventing a pandemic is keeping track of the transmission of disease through populations and geographies. A significant issue in 2020 was difficulty tracing people who had come into contact with infection. There was some success using mobile phones for this, and AI was critical in generating useful knowledge from mobile phone data. The emphasis of Covid tracing apps in 2020 was keeping track of how the disease had already spread, but future developments are likely to be about predicting future spread patterns from such data. Prediction is a strength of AI, and the principles used to great effect in weather forecasting are similar to those used to model likely pandemic spread. Diagnosis To prevent future pandemics, it won’t be enough to predict when a disease is spreading rapidly. To make the most of this knowledge, it’s necessary to diagnose and treat cases. One of the greatest early challenges with Covid was the lack of speedy, reliable tests. For future pandemics, AI is likely to be used to create such tests more quickly than was the case in 2020. Creating a useful test involves modelling a disease’s response to different testing reagents, finding right balance between speed, convenience and accuracy. AI modelling simulates in a computer how individual cells respond to different stimuli, and could be used to perform virtual testing of many different types of test to accelerate how quickly the most promising ones reach laboratory and field trials. In 2020 there were also several novel uses of AI to diagnose Covid, but there were few national and global mechanisms to deploy these at scale. One example was the use of AI imaging, diagnosing Covid by analysing chest x-rays for features specific to Covid. This would have been especially valuable in places that didn’t have access to lab testing equipment. Another example was using AI to analyse the sound of coughs to identify unique characteristics of a Covid cough. AI research to systematically investigate innovative diagnosis techniques such as these should result in better planning for alternatives to laboratory testing. Faster and wider rollout of this kind of diagnosis would help control spread of a future disease during the critical period waiting for other tests to be developed or shared. This would be another contribution of AI to preventing a localised outbreak becoming a pandemic. Treatment Historically, vaccination has proven to be an effective tool for dealing with pandemics, and was the long term solution to Covid for most countries. AI was used to accelerate development of Covid vaccines, helping cut the development time from years or decades to months. In principle, the use of AI was similar to that described above for developing diagnostic tests. Different drug development teams used AI in different ways, but they all relied on mathematical modelling of how the Covid virus would respond to many forms of treatment at a microscopic level. Much of the vaccine research and modelling focused on the “spike” proteins that allow Covid to attack human cells and enter the body. These are also found in other viruses, and were already the subject of research before the 2020 pandemic. That research allowed scientists to quickly develop AI models to represent the spikes, and simulate the effects of different possible treatments. This was crucial in trialling thousands of possible treatments in computer models, pinpointing the most likely successes for further investigation. This kind of mathematical simulation using AI continued during drug development, and moved substantial amounts of work from the laboratory to the computer. This modelling also allowed the impact of Covid mutations on vaccines to be assessed quickly. It is why scientists were reasonably confident of developing variants of vaccines for new Covid mutations in days and weeks rather than months. As a result of the global effort to develop Covid vaccines, the body of data and knowledge about virus behaviour has grown substantially. This means it should be possible to understand new pathogens even more rapidly than Covid, potentially in hours or days rather than weeks. AI has also helped create new ways of approaching vaccine development, for example the use of pre-prepared generic vaccines designed to treat viruses from the same family as Covid. Modifying one of these to the specific features of a new virus is much faster than starting from scratch, and AI may even have already simulated exactly such a variation. AI has been involved in many parts of the fight against Covid, and we now have a much better idea than in 2020 of how to predict, diagnose and treat pandemics, especially similar viruses to Covid. So we can be cautiously optimistic that vaccine development for any future Covid-like viruses will be possible before it becomes a pandemic. Perhaps a trickier question is how well we will be able to respond if the next pandemic is from a virus that is nothing like Covid. Was Rahman is an expert in the ethics of artificial intelligence, the CEO of AI Prescience and the author of AI and Machine Learning. See more at www.wasrahman.com

Read More

Time Machine Big Data of the Past for the Future of Europe

Article | March 9, 2021

Emerging technology has the power to transform history and cultural heritage into a living resource. The Time Machine project will digitise archives from museums and libraries, using Artificial Intelligence and Big Data mining, to offer richer interpretations of our past. An inclusive European identity benefits from a deep engagement with the region’s past. The Time Machine project set out to offer this by exploiting already freely accessible Big Data sources. EU support for a preparatory action enabled the development of a decade-long roadmap for the large-scale digitisation of kilometres of archives, from large museum and library collections, into a distributed information system. Artificial Intelligence (AI) will play a key role at each step, from digitisation planning to document interpretation and fact-checking. Once embedded, this infrastructure could create new business and employment opportunities across a range of sectors including ICT, the creative industries and tourism.

Read More

Value Vs Cost: 3 Core Components to Evaluate a Data and Analytics Solution

Article | March 9, 2021

All business functions whether it is finance, marketing, procurement, or others find using data and analytics to drive success an imperative for today. They want to make informed decisions and be able to predict trends that are based on trusted data and insights from the business, operations, and customers. The criticality of delivering these capabilities was emphasised in a recent report, “The Importance of Unified Data and Analytics, Why and How Preintegrated Data and Analytics Solutions Drive Busines Success,” from Forrester Consulting. For approximately two-thirds of the global data warehouse and analytics strategy decision-makers surveyed in the research, their key data and analytics priorities are:

Read More

Will Quantum Computers Make Supercomputers Obsolete in the Field of High Performance Computing?

Article | March 9, 2021

If you want an explicit answer without having to know the extra details, then here it is: Yes, there is a possibility that quantum computers can replace supercomputers in the field of high performance computing, under certain conditions. Now, if you want to know how and why this scenario is a possibility and what those conditions are, I’d encourage you to peruse the rest of this article. To start, we will run through some very simple definitions. Definitions If you work in the IT sector, you probably would have heard of the terms ‘high performance computing’, ‘supercomputers’ and ‘quantum computers’ many times. These words are thrown around quite often nowadays, especially in the area of data science and artificial intelligence. Perhaps you would have deduced their meanings from their context of use, but you may not have gotten the opportunity to explicitly sit down and do the required research on what they are and why they are used. Therefore, it is a good idea to go through their definitions, so that you have a better understanding of each concept. High Performance Computing: It is the process of carrying out complex calculations and computations on data at a very high speed. It is much faster than regular computing. Supercomputer: It is a type of computer that is used to efficiently perform powerful and quick computations. Quantum Computing: It is a type of computer that makes use of quantum mechanics’ concepts like entanglement and superposition, in order to carry out powerful computations. Now that you’ve gotten the gist of these concepts, let’s dive in a little more to get a wider scope of how they are implemented throughout the world. Background High performance computing is a thriving area in the sector of information technology, and rightly so, due to the rapid surge in the amount of data that is produced, stored, and processed every second. Over the last few decades, data has become increasingly significant to large corporations, small businesses, and individuals, as a result of its tremendous potential in their growth and profit. By properly analysing data, it is possible to make beneficial predictions and determine optimal strategies. The challenge is that there are huge amounts of data being generated every day. If traditional computers are used to manage and compute all of this data, the outcome would take an irrationally long time to be produced. Massive amounts of resources like time, computational power, and expenses would also be required in order to effectuate such computations. Supercomputers were therefore introduced into the field of technology to tackle this issue. These computers facilitate the computation of huge quantities of data at much higher speeds than a regular computer. They are a great investment for businesses that require data to be processed often and in large amounts at a time. The main advantage of supercomputers is that they can do what regular computers need to do, but much more quickly and efficiently. They have an overall high level of performance. Till date, they have been applied in the following domains: • Nuclear Weapon Design • Cryptography • Medical Diagnosis • Weather Forecasting • Online Gaming • Study of Subatomic Particles • Tackling the COVID-19 Pandemic Quantum computers, on the other hand, use a completely different principle when functioning. Unlike regular computers that use bits as the smallest units of data, quantum computers generate and manipulate ‘qubits’ or ‘quantum bits’, which are subatomic particles like electrons or photons. These qubits have two interesting quantum properties which allow them to powerfully compute data – • Superposition: Qubits, like regular computer bits, can be in a state of 1 or 0. However, they also have the ability to be in both states of 1 and 0 simultaneously. This combined state allows quantum computers to calculate a large number of possible outcomes, all at once. When the final outcome is determined, the qubits fall back into a state of either 1 or 0. This property iscalled superposition. • Entanglement: Pairs of qubits can exist in such a way that two members of a pair of qubits exist in a single quantum state. In such a situation, changing the state of one of the qubits can instantly change the state of the other qubit. This property is called entanglement. Their most promising applications so far include: • Cybersecurity • Cryptography • Drug Designing • Financial Modelling • Weather Forecasting • Artificial Intelligence • Workforce Management Despite their distinct features, both supercomputers and quantum computers are immensely capable of providing users with strong computing facilities. The question is, how do we know which type of system would be the best for high performance computing? A Comparison High performance computing requires robust machines that can deal with large amounts of data - This involves the collection, storage, manipulation, computation, and exchange of data in order to derive insights that are beneficial to the user. Supercomputers have successfully been used so far for such operations. When the concept of a quantum computer first came about, it caused quite a revolution within the scientific community. People recognised its innumerable and widespread abilities, and began working on ways to convert this theoretical innovation into a realistic breakthrough. What makes a quantum computer so different from a supercomputer? Let’s have a look at Table 1.1 below. From the table, we can draw the following conclusions about supercomputers and quantum computers - 1. Supercomputers have been around for a longer duration of time, and are therefore more advanced. Quantum computers are relatively new and still require a great depth of research to sufficiently comprehend their working and develop a sustainable system. 2. Supercomputers are easier to provide inputs to, while quantum computers need a different input mechanism. 3. Supercomputers are fast, but quantum computers are much faster. 4. Supercomputers and quantum computers have some similar applications. 5. Quantum computers can be perceived as extremely powerful and highly advanced supercomputers. Thus, we find that while supercomputers surpass quantum computers in terms of development and span of existence, quantum computers are comparatively much better in terms of capability and performance. The Verdict We have seen what supercomputers and quantum computers are, and how they can be applied in real-world scenarios, particularly in the field of high performance computing. We have also gone through their differences and made significant observations in this regard. We find that although supercomputers have been working great so far, and they continue to provide substantial provisions to researchers, organisations, and individuals who require intense computational power for the quick processing of enormous amounts of data, quantum computers have the potential to perform much better and provide faster and much more adequate results. Thus, quantum computers can potentially make supercomputers obsolete, especially in the field of high performance computing, if and only if researchers are able to come up with a way to make the development, deployment, and maintenance of these computers scalable, feasible, and optimal for consumers.

Read More

Spotlight

Actifio

Actifio virtualizes the data that’s the lifeblood of businesses in more than 30 countries around the world. Its Virtual Data Pipeline™ technology enables businesses to manage, access, and protect their data faster, more efficiently, and more simply by decoupling data from physical storage, much the same way a hypervisor decouples compute from physical servers.

Events