Why Going Data-Native Can Save Your Data Lake

| May 1, 2018

article image
Since companies began adopting data lakes, most of the time the data they have stored there offers a distilled and low-resolution version of the business. And frankly, there’s nothing wrong with such a picture — it can be incredibly powerful and add value to the business. But, if that’s the degree of resolution you want, there’s no reason to use a data lake for storage. You’re underutilizing data lakes in such a scenario. A data-native approach gets the most out of a data lake because it starts from the understanding that big data can and should provide us with a high resolution picture. It expands the types of data we can be using from beyond that usually distilled in data warehouses to encompass a lot of new data in its raw, original form. A data-native approach uses this data to create a high resolution view of the business, but also exploits techniques that are able to distill the signal in the incredible granularity of big data using analytics and machine learning.

Spotlight

Concertia Technologies Inc

Concertia helps organizations implement better business processes that increase agility and the ability to compete in the global marketplace. Our comprehensive knowledge of the industries we serve helps us to put the right processes and business rules in place to support and grow organizations through innovative business and IT solutions.

OTHER ARTICLES

Predictive analytics vs AI Why the difference matters

Article | February 10, 2020

There are few movie scenes I can recall from my childhood, but I vividly remember seeing the 1968 Stanley Kubrick sci-fi movie 2001 A Space Odyssey in 1970 with my older cousin. What stays with me to this day is the scene where astronaut Dave asks HAL, the homicidal computer based on artificial intelligence (AI), to open the pod bay doors. HAL's eerie reply: I'm sorry, Dave. I'm afraid I can't do that.In that moment, the concept of man vs. machine was created, predicated on the idea that machines created by man and using AI could (eventually) defy orders, position themselves in the vanguard, and overthrow humankind. Fast forward to today. Within the information governance space, there are two terms that have been used quite frequently in recent years analytics and AI. Often they are used interchangeably and are practically synonymous.

Read More

DATA CENTRE MARKET EXPECTED TO ACCELERATE OWING TO INCREASING CLOUD DEMAND

Article | February 28, 2020

An enormous amount of data is generated daily through various medium and amid this their storage becomes a great concern for organizations. Currently, two significant styles of data storage capacities are available Cloud and Data Centre.The main difference between the cloud vs. data centre is that a data centre refers to on-premise hardware while the cloud refers to off-premise computing. The cloud stores the data in the public cloud, while a data centre stores the data on company’s own hardware. Many businesses are turning to the cloud. In fact, Gartner, Inc. predicted that the worldwide public cloud services market has grown to 17.5 percent in 2019 to total US$214.3 billion. For many businesses, utilizing the cloud makes sense. While, in many other cases, having an in-house data centre is a better option. Often, maintaining an in-house data centre is expensive, but it can be beneficial to be in total control of computing environment.

Read More

How data analytics and IoT are driving insurtech growth

Article | March 17, 2020

Technology is driving change in every industry and region around the world and insurance is no different. The financial services sector is a good example of how digitally disruptive technologies such as artificial intelligence, Big Data and mobile-first banking experiences have paved the way for innovative fintechs.The insurance industry is no different. According to a report by Accenture titled The Rise of Insurtech: How Young Startups and a Mature Industry Can Bring Out the Best in One Another, for example, there is a growing recognition that the insurance industry will ultimately see the greatest benefit and the highest levels of disruption - from this global upsurge in innovation”.

Read More

What is Data Integrity and Why is it Important?

Article | July 19, 2021

In an era of big data, data health has become a pressing issue when more and more data is being stored and processed. Therefore, preserving the integrity of the collected data is becoming increasingly necessary. Understanding the fundamentals of data integrity and how it works is the first step in safeguarding the data. Data integrity is essential for the smooth running of a company. If a company’s data is altered, deleted, or changed, and if there is no way of knowing how it can have significant impact on any data-driven business decisions. Data integrity is the reliability and trustworthiness of data throughout its lifecycle. It is the overall accuracy, completeness, and consistency of data. It can be indicated by lack of alteration between two updates of a data record, which means data is unchanged or intact. Data integrity refers to the safety of data regarding regulatory compliance- like GDPR compliance- and security. A collection of processes, rules, and standards implemented during the design phase maintains the safety and security of data. The information stored in the database will remain secure, complete, and reliable no matter how long it’s been stored; that’s when you know that the integrity of data is safe. A data integrity framework also ensures that no outside forces are harming this data. This term of data integrity may refer to either the state or a process. As a state, the data integrity framework defines a data set that is valid and accurate. Whereas as a process, it describes measures used to ensure validity and accuracy of data set or all data contained in a database or a construct. Data integrity can be enforced at both physical and logical levels. Let us understand the fundamentals of data integrity in detail: Types of Data Integrity There are two types of data integrity: physical and logical. They are collections of processes and methods that enforce data integrity in both hierarchical and relational databases. Physical Integrity Physical integrity protects the wholeness and accuracy of that data as it’s stored and retrieved. It refers to the process of storage and collection of data most accurately while maintaining the accuracy and reliability of data. The physical level of data integrity includes protecting data against different external forces like power cuts, data breaches, unexpected catastrophes, human-caused damages, and more. Logical Integrity Logical integrity keeps the data unchanged as it’s used in different ways in a relational database. Logical integrity checks data accuracy in a particular context. The logical integrity is compromised when errors from a human operator happen while entering data manually into the database. Other causes for compromised integrity of data include bugs, malware, and transferring data from one site within the database to another in the absence of some fields. There are four types of logical integrity: Entity Integrity A database has columns, rows, and tables. These elements need to be as numerous as required for the data to be accurate, but no more than necessary. Entity integrity relies on the primary key, the unique values that identify pieces of data, making sure the data is listed just once and not more to avoid a null field in the table. The feature of relational systems that store data in tables can be linked and utilized in different ways. Referential Integrity Referential integrity means a series of processes that ensure storage and uniform use of data. The database structure has rules embedded into them about the usage of foreign keys and ensures only proper changes, additions, or deletions of data occur. These rules can include limitations eliminating duplicate data entry, accurate data guarantee, and disallowance of data entry that doesn’t apply. Foreign keys relate data that can be shared or null. For example, let’s take a data integrity example, employees that share the same work or work in the same department. Domain Integrity Domain Integrity can be defined as a collection of processes ensuring the accuracy of each piece of data in a domain. A domain is a set of acceptable values a column is allowed to contain. It includes constraints that limit the format, type, and amount of data entered. In domain integrity, all values and categories are set. All categories and values in a database are set, including the nulls. User-Defined Integrity This type of logical integrity involves the user's constraints and rules to fit their specific requirements. The data isn’t always secure with entity, referential, or domain integrity. For example, if an employer creates a column to input corrective actions of the employees, this data would fall under user-defined integrity. Difference between Data Integrity and Data Security Often, the terms data security and data integrity get muddled and are used interchangeably. As a result, the term is incorrectly substituted for data integrity, but each term has a significant meaning. Data integrity and data security play an essential role in the success of each other. Data security means protecting data against unauthorized access or breach and is necessary to ensure data integrity. Data integrity is the result of successful data security. However, the term only refers to the validity and accuracy of data rather than the actual act of protecting data. Data security is one of the many ways to maintain data integrity. Data security focuses on reducing the risk of leaking intellectual property, business documents, healthcare data, emails, trade secrets, and more. Some facets of data security tactics include permissions management, data classification, identity, access management, threat detection, and security analytics. For modern enterprises, data integrity is necessary for accurate and efficient business processes and to make well-intentioned decisions. Data integrity is critical yet manageable for organizations today by backup and replication processes, database integrity constraints, validation processes, and other system protocols through varied data protection methods. Threats to Data Integrity Data integrity can be compromised by human error or any malicious acts. Accidental data alteration during the transfer from one device to another can be compromised. There is an assortment of factors that can affect the integrity of the data stored in databases. Following are a few of the examples: Human Error Data integrity is put in jeopardy when individuals enter information incorrectly, duplicate, or delete data, don’t follow the correct protocols, or make mistakes in implementing procedures to protect data. Transfer Error A transfer error occurs when data is incorrectly transferred from one location in a database to another. This error also happens when a piece of data is present in the destination table but not in the source table in a relational database. Bugs and Viruses Data can be stolen, altered, or deleted by spyware, malware, or any viruses. Compromised Hardware Hardware gets compromised when a computer crashes, a server gets down, or problems with any computer malfunctions. Data can be rendered incorrectly or incompletely, limit, or eliminate data access when hardware gets compromised. Preserving Data Integrity Companies make decisions based on data. If that data is compromised or incorrect, it could harm that company to a great extent. They routinely make data-driven business decisions, and without data integrity, those decisions can have a significant impact on the company’s goals. The threats mentioned above highlight a part of data security that can help preserve data integrity. Minimize the risk to your organization by using the following checklist: Validate Input Require an input validation when your data set is supplied by a known or an unknown source (an end-user, another application, a malicious user, or any number of other sources). The data should be validated and verified to ensure the correct input. Validate Data Verifying data processes haven’t been corrupted is highly critical. Identify key specifications and attributes that are necessary for your organization before you validate the data. Eliminate Duplicate Data Sensitive data from a secure database can easily be found on a document, spreadsheet, email, or shared folders where employees can see it without proper access. Therefore, it is sensible to clean up stray data and remove duplicates. Data Backup Data backups are a critical process in addition to removing duplicates and ensuring data security. Permanent loss of data can be avoided by backing up all necessary information, and it goes a long way. Back up the data as much as possible as it is critical as organizations may get attacked by ransomware. Access Control Another vital data security practice is access control. Individuals in an organization with any wrong intent can harm the data. Implement a model where users who need access can get access is also a successful form of access control. Sensitive servers should be isolated and bolted to the floor, with individuals with an access key are allowed to use them. Keep an Audit Trail In case of a data breach, an audit trail will help you track down your source. In addition, it serves as breadcrumbs to locate and pinpoint the individual and origin of the breach. Conclusion Data collection was difficult not too long ago. It is no longer an issue these days. With the amount of data being collected these days, we must maintain the integrity of the data. Organizations can thus make data-driven decisions confidently and take the company ahead in a proper direction. Frequently Asked Questions What are integrity rules? Precise data integrity rules are short statements about constraints that need to be applied or actions that need to be taken on the data when entering the data resource or while in the data resource. For example, precise data integrity rules do not state or enforce accuracy, precision, scale, or resolution. What is a data integrity example? Data integrity is the overall accuracy, completeness, and consistency of data. A few examples where data integrity is compromised are: • When a user tries to enter a date outside an acceptable range • When a user tries to enter a phone number in the wrong format • When a bug in an application attempts to delete the wrong record What are the principles of data integrity? The principles of data integrity are attributable, legible, contemporaneous, original, and accurate. These simple principles need to be part of a data life cycle, GDP, and data integrity initiatives. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are integrity rules?", "acceptedAnswer": { "@type": "Answer", "text": "Precise data integrity rules are short statements about constraints that need to be applied or actions that need to be taken on the data when entering the data resource or while in the data resource. For example, precise data integrity rules do not state or enforce accuracy, precision, scale, or resolution." } },{ "@type": "Question", "name": "What is a data integrity example?", "acceptedAnswer": { "@type": "Answer", "text": "Data integrity is the overall accuracy, completeness, and consistency of data. A few examples where data integrity is compromised are: When a user tries to enter a date outside an acceptable range When a user tries to enter a phone number in the wrong format When a bug in an application attempts to delete the wrong record" } },{ "@type": "Question", "name": "What are the principles of data integrity?", "acceptedAnswer": { "@type": "Answer", "text": "The principles of data integrity are attributable, legible, contemporaneous, original, and accurate. These simple principles need to be part of a data life cycle, GDP, and data integrity initiatives." } }] }

Read More

Spotlight

Concertia Technologies Inc

Concertia helps organizations implement better business processes that increase agility and the ability to compete in the global marketplace. Our comprehensive knowledge of the industries we serve helps us to put the right processes and business rules in place to support and grow organizations through innovative business and IT solutions.

Events