Zoomdata embedding in SAP Lumira and SAP Cloud Platform

|

article image
Today Zoomdata is announcing a partnership with SAP’s Analytics team to bring the power of Zoomdata’s big and real-time data analytics to the SAP Lumira 2.0 platform. SAP Lumira and Business Objects are used by thousands of companies around the world.SAP is also innovating quickly on their SAP Big Data (formerly Altiscale), Vora (based on Spark), Cloud Platform, Leonardo, HANA, and Machine Learning platforms, all of which Zoomdata can connect to seamlessly.

Spotlight

MSys Technologies LLC

MSys Technologies is an innovator in offering technology services and domain-specific test automation software (for both desktop and mobile apps). MSys’s unparalleled focus and deep technical expertise ensures the best value in the areas of storage, virtualization, telecommunications, servers, DR/BC, test automation, mobile test automation, etc…

OTHER ARTICLES

How to Overcome Challenges in Adopting Data Analytics

Article | April 20, 2020

Achieving organizational success and making data-driven decisions in 2020 requires embracing tech tools like Data Analytics and collecting, storing and analysing data isn’t.The real data-driven, measurable growth, and development come with the establishment of data-driven company culture.In this type of culture company actively uses data resources as a primary asset to make smart decisions and ensure future growth. Despite the rapid growth of analytic solutions, a recent Gartner survey revealed that almost 75% of organizations thought their analytics maturity had not reached a level that optimized business outcomes. Just like with any endeavor, your organization must have a planned strategy to achieve its analytical goals. Let’s explore ways for overcoming common blockers, and elements used in successful analytics adoption strategies. Table of Contents: - AMM: Analytic Maturity Model - What are the blockers to achieving a strategy-driven analytics? - What are the adoption strategies to achieve an analytics success? - Conclusion AMM: Analytic Maturity Model The Analytic Maturity Model (AMM) evaluates the analytic maturity of an organization.The model identifies the five stages an organization travels through to reach optimization. Organizations must implement the right tools, engage their team in proper training, and provide the management support necessary to generate predictable outcomes with their analytics. Based on the maturity of these processes, the AMM divides organizations into five maturity levels: - Organizations that can build reports. - Organizations that can build and deploy models. - Organizations that have repeatable processes for building and deploying analytics. - Organizations that have consistent enterprise-wide processes for analytics. - Enterprises whose analytics is strategy driven. READ MORE:EFFECTIVE STRATEGIES TO DEMOCRATIZE DATA SCIENCE IN YOUR ORGANIZATION What are the blockers to achieving a strategy-driven analytics? - Missing an Analytics Strategy - Analytics is not for everyone - Data quality presents unique challenges - Siloed Data - Changing the culture What are the adoption strategies to achieve analytic success? • Have you got a plan to achieve analytic success? The strategy begins with business intelligence and moves toward advanced analytics. The approach differs based on the AMM level. The plan may address the strategy for a single year, or it may span 3 or more years. It ideally has milestones for what the team will do. When forming an analytics strategy, it can be expensive and time consuming at the outset. While organizations are encouraged to seek projects that can generate quick wins, the truth is that it may be months before any actionable results are available. During this period, the management team is frantically diverting resources from other high-profile projects. If funds are tight, this situation alone may cause friction. It may not be apparent to everyone how the changes are expected to help. Here are the elements of a successful analytics strategy: • Keep the focus tied to tangible business outcomes The strategy must support business goals first. With as few words as possible, your plan should outline what you intend to achieve, how to complete it, and a target date for completion of the plan. Companies may fail at this step because they mistake implementing a tool for having a strategy. To keep it relevant, tie it to customer-focused goals. The strategy must dig below the surface with the questions that it asks. Instead of asking surface questions such as “How can we save money?”, instead ask, “How can we improve the quality of the outcomes for our customers?” or “What would improve the productivity of each worker?” These questions are more specific and will get the results the business wants. You may need to use actual business cases from your organization to think through the questions. • Select modern, multi-purpose tools The organization should be looking for an enterprise tool that supports integrating data from various databases, spreadsheets, or even external web based sources. Typically, organizations may have their data stored across multiple databases such as Salesforce, Oracle, and even Microsoft Access. The organization can move ahead quicker when access to the relevant data is in a single repository. With the data combined, the analysts have a specific location to find reports and dashboards. The interface needs to be robust enough to show the data from multiple points of view. It should also allow future enhancements, such as when the organization makes the jump into data science. Incorta’s Data Analytics platform simplifies and processes data to provide meaningful information at speed that helps make informed decisions. Incorta is special in that it allows business users to ask the same complex and meaningful questions of their data that typically require many IT people and data scientist to get the answers they need to improve their line of business. At the digital pace of business today, that can mean millions of dollars for business leaders in finance, supply chain or even marketing. Speed is a key differentiator for Incorta in that rarely has anyone been able to query billions of rows of data in seconds for a line of business owner. - Tara Ryan, CMO, Incorta Technology implementations take time. That should not stop you from starting in small areas of the company to look for quick wins. Typically, the customer-facing processes have areas where it is easier to collect data and show opportunities for improvement. • Ensure staff readiness If your current organization is not data literate, then you will need resources who understand how to analyze and use data for process improvement. It is possible that you can make data available and the workers still not realize what they can do with it. The senior leadership may also need training about how to use data and what data analytics makes possible. • Start Small to Control Costs and Show Potential If the leadership team questions the expense, consider doing a proof of concept that focuses on the tools and data being integrated quickly and efficiently to show measurable success. The business may favor specific projects or initiatives to move the company forward over long-term enterprise transformations (Bean & Davenport, 2019). Keeping the project goals precise and directed helps control costs and improve the business. As said earlier, the strategy needs to answer deeper business questions. Consider other ways to introduce analytics into the business. Use initiatives that target smaller areas of the company to build competencies. Provide an analytics sandbox with access to tools and training to encourage other non-analytics workers (or citizen data scientists) to play with the data. One company formed a SWAT team, including individuals from across the organization. The smaller team with various domain experience was better able to drive results. There are also other approaches to use – the key is to show immediate and desirable results that align with organizational goals. • Treating the poor data quality What can you do about poor data quality at your company? Several solutions that can help to improve productivity and reduce the financial impact of poor data quality in your organization include: • Create a team to set the proper objectives Create a team who owns the data quality process. This is important to prove to yourself and to anyone with whom you are conversing about data that you are serious about data quality. The size of the team is not as important as the membership from the parts of the organization that have the right impact and knowledge in the process. When the team is set, make sure that they create a set of goals and objectives for data quality. To gauge performance, you need a set of metrics to measure the performance. After you create the proper team to govern your data quality, ensure that the team focuses on the data you need first. Everyone knows the rules of "good data in, good data out" and "bad data in, bad data out." To put this to work, make sure that your team knows the relevant business questions that are in progress across various data projects to make sure that they focus on the data that supports those business questions. • Focus on the data you need now as the highest priority Once you do that, you can look at the potential data quality issues associated with each of the relevant downstream business questions and put the proper processes and data quality routines in place to ensure that poor data quality has a low probability of Successful Analytics Adoption Strategies, continuing to affect that data. As you decide which data to focus on, remember that the key for innovators across industries is that the size of the data isn’t the most critical factor — having the right data is (Wessel, 2016). • Automate the process of data quality when data volumes grow too large When data volumes become unwieldy and difficult to manage the quality, automate the process. Many data quality tools in the market do a good job of removing the manual effort from the process. Open source options include Talend and DataCleaner. Commercial products include offerings from DataFlux, Informatica, Alteryx and Software AG. As you search for the right tool for you and your team, beware that although the tools help with the organization and automation, the right processes and knowledge of your company's data are paramount to success. • Make the process of data quality repeatable It needs regular care and feeding. Remember that the process is not a one-time activity. It needs regular care and feeding. While good data quality can save you a lot of time, energy, and money downstream, it does take time, investment, and practice to do well. As you improve the quality of your data and the processes around that quality, you will want to look for other opportunities to avoid data quality mishaps. • Beware of data that lives in separate databases When data is stored in different databases, there can be issues with different terms being used for the same subject. The good news is that if you have followed the former solutions, you should have more time to invest in looking for the best cases. As always, look for the opportunities with the biggest bang for the buck first. You don't want to be answering questions from the steering committee about why you are looking for differences between "HR" and "Hr" if you haven't solved bigger issues like knowing the difference between "Human Resources" and "Resources," for example. • De-Siloing Data The solution to removing data silos typically isn’t some neatly packaged, off-the-shelf product. Attempts to quickly create a data lake by simply pouring all the siloed data together can result in an unusable mess, turning more into a data swamp. This is a process that must be done carefully to avoid confusion, liability, and error. Try to identify high-value opportunities and find the various data stores required to execute those projects. Working with various business groups to find business problems that are well-suited to data science solutions and then gathering the necessary data from the various data stores can lead to high-visibility successes. As value is proved from joining disparate data sources together to create new insights, it will be easier to get buy-in from upper levels to invest time and money into consolidating key data stores. In the first efforts, getting data from different areas may be akin to pulling teeth, but as with most things in life, the more you do it, the easier it gets. Once the wheels get moving on a few of these integration projects, make wide-scale integration the new focus. Many organizations at this stage appoint a Chief Analytics Officer (CAO) who helps increase collaboration between the IT and business units ensuring their priorities are aligned. As you work to integrate the data, make sure that you don’t inadvertently create a new “analytics silo.” The final aim here is an integrated platform for your enterprise data. • Education is essential When nearly 45% of workers generally prefer status quo over innovation, how do you encourage an organization to move forward? If the workers are not engaged or see the program as merely just the latest management trend, it may be tricky to convince them. Larger organizations may have a culture that is slow to change due to their size or outside forces. There’s also a culture shift required - moving from experience and knee-jerk reactions to immersion and exploration of rich insights and situational awareness. - Walter Storm, the Chief Data Scientist, Lockheed Martin Companies spend a year talking about an approved analytics tool before moving forward. The employees had time to consider the change and to understand the new skill sets needed. Once the entire team embraced the change, the organization moved forward swiftly to convert existing data and reports into the new tool. In the end, the corporation is more successful, and the employees are still in alignment with the corporate strategy. If using data to support decisions is a foreign concept to the organization, it’s a smart idea to ensure the managers and workers have similar training. This training may involve everything from basic data literacy to selecting the right data for management presentations. However, it cannot stop at the training; the leaders must then ask for the data to move forward with requests that will support conclusions that will be used to make critical decisions across the business. These methods make it easier to sell the idea and keep the organization’s analytic strategy moving forward. Once senior leadership uses data to make decisions, everyone else will follow their lead. It is that simple. Conclusion The analytics maturity model serves as a useful framework for understanding where your organization currently stands regarding strategy, progress, and skill sets. Advancing along the various levels of the model will become increasingly imperative as early adopters of advanced analytics gain a competitive edge in their respective industries. Delay or failure to design and incorporate a clearly defined analytics strategy into an organization’s existing plan will likely result in a significant missed opportunity. READ MORE:BIG DATA ANALYTICS STRATEGIES ARE MATURING QUICKLY IN HEALTHCARE

Read More

Data Analytics vs Data Science Comparison

Article | April 20, 2020

The terms data science and data analytics are not unfamiliar with individuals who function within the technology field. Indeed, these two terms seem the same and most people use them as synonyms for each other. However, a large proportion of individuals are not aware that there is actually a difference between data science and data analytics.It is pertinent that individuals whose work revolves around these terms or the information and technology industries, should know how to use these terms in the appropriate contexts. The reason for this is quite simple: the right usage of these terms has significant impacts on the management and productivity of a business, especially in today’s rapidly data-dependent world.

Read More
BIG DATA MANAGEMENT

How can machine learning detect money laundering?

Article | April 20, 2020

In this article, we will explore different techniques to detect money laundering activities. Notwithstanding, regardless of various expected applications inside the financial services sector, explicitly inside the Anti-Money Laundering (AML) appropriation of Artificial Intelligence and Machine Learning (ML) has been generally moderate. What is Money Laundering, Anti Money Laundering? Money Laundering is where someone unlawfully obtains money and moves it to cover up their crimes. Anti-Money Laundering can be characterized as an activity that forestalls or aims to forestall money laundering from occurring. It is assessed by UNO that, money-laundering exchanges account in one year is 2–5% of worldwide GDP or $800 billion — $3 trillion in USD. In 2019, regulators and governmental offices exacted fines of more than $8.14 billion. Indeed, even with these stunning numbers, gauges are that just about 1 % of unlawful worldwide money related streams are ever seized by the specialists. AML activities in banks expend an over the top measure of manpower, assets, and cash flow to deal with the process and comply with the guidelines. What are the punishments for money laundering? In 2019, Celent evaluated that spending came to $8.3 billion and $23.4 billion for technology and operations, individually. This speculation is designated toward guaranteeing anti-money laundering. As we have seen much of the time, reputational costs can likewise convey a hefty price. In 2012, HSBC laundering of an expected £5.57 billion over at least seven years.   What is the current situation of the banks applying ML to stop money laundering? Given the plenty of new instruments the banks have accessible, the potential feature risk, the measure of capital involved, and the gigantic expenses as a form of fines and punishments, this should not be the situation. A solid impact by nations to curb illicit cash movement has brought about a huge yet amazingly little part of money laundering being recognized — a triumph rate of about 2% average. Dutch banks — ABN Amro, Rabobank, ING, Triodos Bank, and Volksbank announced in September 2019 to work toward a joint transaction monitoring to stand-up fight against Money Laundering. A typical challenge in transaction monitoring, for instance, is the generation of a countless number of alerts, which thusly requires operation teams to triage and process the alarms. ML models can identify and perceive dubious conduct and besides they can classify alerts into different classes such as critical, high, medium, or low risk. Critical or High alerts may be directed to senior experts on a high need to quickly explore the issue. Today is the immense number of false positives, gauges show that the normal, of false positives being produced, is the range of 95 and 99%, and this puts extraordinary weight on banks. The examination of false positives is tedious and costs money. An ongoing report found that banks were spending near 3.01€ billion every year exploring false positives. Establishments are looking for increasing productive ways to deal with crime and, in this specific situation, Machine Learning can end up being a significant tool. Financial activities become productive, the gigantic sum and speed of money related exchanges require a viable monitoring framework that can process exchanges rapidly, ideally in real-time.   What are the types of machine learning algorithms which can identify money laundering transactions? Supervised Machine Learning, it is essential to have historical information with events precisely assigned and input variables appropriately captured. If biases or errors are left in the data without being dealt with, they will get passed on to the model, bringing about erroneous models. It is smarter to utilize Unsupervised Machine Learning to have historical data with events accurately assigned. It sees an obscure pattern and results. It recognizes suspicious activity without earlier information of exactly what a money-laundering scheme resembles. What are the different techniques to detect money laundering? K-means Sequence Miner algorithm: Entering banking transactions, at that point running frequent pattern mining algorithms and mining transactions to distinguish money laundering. Clustering transactions and dubious activities to money laundering lastly show them on a chart. Time Series Euclidean distance: Presenting a sequence matching algorithm to distinguish money laundering detection, utilizing sequential detection of suspicious transactions. This method exploits the two references to recognize dubious transactions: a history of every individual’s account and exchange data with different accounts. Bayesian networks: It makes a model of the user’s previous activities, and this model will be a measure of future customer activities. In the event that the exchange or user financial transactions have. Cluster-based local outlier factor algorithm: The money laundering detection utilizing clustering techniques combination and Outliers.   Conclusion For banks, now is the ideal opportunity to deploy ML models into their ecosystem. Despite this opportunity, increased knowledge and the number of ML implementations prompted a discussion about the feasibility of these solutions and the degree to which ML should be trusted and potentially replace human analysis and decision-making. In order to further exploit and achieve ML promise, banks need to continue to expand on its awareness of ML strengths, risks, and limitations and, most critically, to create an ethical system by which the production and use of ML can be controlled and the feasibility and effect of these emerging models proven and eventually trusted.

Read More

Topic modelling. Variation on themes and the Holy Grail

Article | April 20, 2020

Massive amount of data is collected and stored by companies in the search for the “Holy Grail”. One crucial component is the discovery and application of novel approaches to achieve a more complete picture of datasets provided by the local (sometimes global) event-based analytic strategy that currently dominates a specific field. Bringing qualitative data to life is essential since it provides management decisions’ context and nuance. An NLP perspective for uncovering word-based themes across documents will facilitate the exploration and exploitation of qualitative data which are often hard to “identify” in a global setting. NLP can be used to perform different analysis mapping drivers. Broadly speaking, drivers are factors that cause change and affect institutions, policies and management decision making. Being more precise, a “driver” is a force that has a material impact on a specific activity or an entity, which is contextually dependent, and which affects the financial market at a specific time. (Litterio, 2018). Major drivers often lie outside the immediate institutional environment such as elections or regional upheavals, or non-institutional factors such as Covid or climate change. In Total global strategy: Managing for worldwide competitive advantage, Yip (1992) develops a framework based on a set of four industry globalization drivers, which highlights the conditions for a company to become more global but also reflecting differentials in a competitive environment. In The lexicons: NLP in the design of Market Drivers Lexicon in Spanish, I have proposed a categorization into micro, macro drivers and temporality and a distinction among social, political, economic and technological drivers. Considering the “big picture”, “digging” beyond usual sectors and timeframes is key in state-of-the-art findings. Working with qualitative data. There is certainly not a unique “recipe” when applying NLP strategies. Different pipelines could be used to analyse any sort of textual data, from social media and reviews to focus group notes, blog comments and transcripts to name just a few when a MetaQuant team is looking for drivers. Generally, being textual data the source, it is preferable to avoid manual task on the part of the analyst, though sometimes, depending on the domain, content, cultural variables, etc. it might be required. If qualitative data is the core, then the preferred format is .csv. because of its plain nature which typically handle written responses better. Once the data has been collected and exported, the next step is to do some pre-processing. The basics include normalisation, morphosyntactic analysis, sentence structural analysis, tokenization, lexicalization, contextualization. Just simplify the data to make analysis easier. Topic modelling. Topic modelling refers to the task of recognizing words from the main topics that best describe a document or the corpus of data. LAD (Latent Dirichlet Allocation) is one of the most powerful algorithms with excellent implementations in the Python’s Gensim package. The challenge: how to extract good quality of topics that are clear and meaningful. Of course, this depends mostly on the nature of text pre-processing and the strategy of finding the optimal number of topics, the creation of a lexicon(s) and the corpora. We can say that a topic is defined or construed around the most representative keywords. But are keywords enough? Well, there are some other factors to be observed such as: 1. The variety of topics included in the corpora. 2. The choice of topic modelling algorithm. 3. The number of topics fed to the algorithm. 4. The algorithms tuning parameters. As you probably have noticed finding “the needle in the haystack” is not that easy. And only those who can use creatively NLP will have the advantage of positioning for global success.

Read More

Spotlight

MSys Technologies LLC

MSys Technologies is an innovator in offering technology services and domain-specific test automation software (for both desktop and mobile apps). MSys’s unparalleled focus and deep technical expertise ensures the best value in the areas of storage, virtualization, telecommunications, servers, DR/BC, test automation, mobile test automation, etc…

Events