Big Data Management

MayStreet Launches Next Generation of Market Data Analytics Product

MayStreet, the industry’s leading market data technology and content provider, today announced the launch of the next generation of Analytics Workbench, the firm’s ready-to-use, cloud-based market data analytics environment. Through Analytics Workbench, data analysts can quickly and efficiently query the MayStreet Market Data Lake to drive mission-critical trading workflows without having to manage data capture, delivery or storage.

Key features of new Analytics Workbench include the ability to:

  • Query and extract data using Python or R for analysis within Workbench or in any other location, whether in the cloud or on-premise
  • Leverage pre-configured Jupyter® notebooks to support out-of-the-box query capabilities
  • Perform ad-hoc analyses or schedule batch jobs to support ongoing reporting requirements
  • Instantly parallelize and scale ad-hoc or scheduled code across the cloud with integrated support for Dask clusters
  • Upload internal order data or other third-party data to leverage in conjunction with MayStreet market data to support TCA, fill analysis and best execution reporting
  • Query results provided in normalized or raw PCAP formats and create reports using powerful visualization tools
  • Flexible deployment options, either fully managed within MayStreet’s cloud environment or integrated within a client’s cloud
  • Achieve performance objectives with optimized cluster parallelization

“The completely revamped Analytics Workbench realizes our goal of letting users bring their queries to our data, freeing them from the difficult and costly work of managing the data themselves. For the first time, our vast repository of ultra-high-quality global market data is accessible in a ready-to-use environment that leverages cloud economics. It’s also highly customizable, letting clients choose the level of performance they desire so that costs can be managed based on their needs. For capital markets data analysts, the new Analytics Workbench is a true gamechanger.”

Naftali Cohen, MayStreet’s Chief Revenue Officer

Dave Thompson, Senior Vice President, Frontend Engineering, added: “In the process of redeveloping Analytics Workbench from the ground up, we identified several tools such as Dremio, Dask and Jupyter that could elevate its performance, functionality and scalability. By integrating these and other technologies, we have been able to create a truly modern data access and analytics tool built for the cloud. We’ve had many conversations with clients over the past 18 months about their hopes for a product like this, and we’re very pleased with the end result.”

The new version of Analytics Workbench is currently being used by multiple clients, including a global investment bank, an exchange and a quantitative hedge fund. MayStreet expects additional clients to begin using the product over the coming weeks. Analytics Workbench was used by market structure researchers Robert Bartlett, Justin McCrary and Maureen O’Hara for their recent paper on the impact of odd lot quotes.

“MayStreet’s comprehensive, high-quality exchange data allowed us to document the vital importance of odd lot quotes in today’s equity markets, especially for higher-priced stocks,” said Bartlett, Faculty Director at the Berkeley Center for Law, Business and the Economy. “Without reliable access to the historical data feeds for all exchanges, such a study would simply not be possible given that these quotes are excluded from the SIP data. Additionally, leveraging MayStreet’s Analytics Workbench gave us the computational capacity we needed to process quickly the vast quantities of data.”

MayStreet’s release of Analytics Workbench is the latest in a series of enhancements to the MayStreet Market Data Lake. Other recent enhancements include access through a new High Performance Query (HPQ) API, the introduction of full-depth-of-book data for all US listed options markets and the round out of its global coverage with the addition of all major equities and futures markets in Asia-Pacific.

About MayStreet
MayStreet delivers the highest-quality, most complete global market data available. The firm’s solutions – which include the highly accessible Market Data Lake feed repository and Bellport Enterprise feed handler – help market participants generate maximum value from exchange data by delivering it when, where and how they want to receive it. With MayStreet, clients are freed from the difficult and costly work of sourcing and processing market data, leading to lower total cost of ownership, improved decision-making and better performance.

Spotlight

Spotlight

Related News

Big Data Management

The Modern Data Company Recognized in Gartner's Magic Quadrant for Data Integration

The Modern Data Company | January 23, 2024

The Modern Data Company, recognized for its expertise in developing and managing advanced data products, is delighted to announce its distinction as an honorable mention in Gartner's 'Magic Quadrant for Data Integration Tools,' powered by our leading product, DataOS. “This accolade underscores our commitment to productizing data and revolutionizing data management technologies. Our focus extends beyond traditional data management, guiding companies on their journey to effectively utilize data, realize tangible ROI on their data investments, and harness advanced technologies such as AI, ML, and Large Language Models (LLMs). This recognition is a testament to Modern Data’s alignment with the latest industry trends and our dedication to setting new standards in data integration and utilization.” – Srujan Akula, CEO of The Modern Data Company The inclusion in the Gartner report highlights The Modern Data Company's pivotal role in shaping the future of data integration. Our innovative approach, embodied in DataOS, enables businesses to navigate the complexities of data management, transforming data into a strategic asset. By simplifying data access and integration, we empower organizations to unlock the full potential of their data, driving insights and innovation without disruption. "Modern Data's recognition as an Honorable Mention in the Gartner MQ for Data Integration is a testament to the transformative impact their solutions have on businesses like ours. DataOS has been pivotal in allowing us to integrate multiple data sources, enabling our teams to have access to the data needed to make data driven decisions." – Emma Spight, SVP Technology, MIND 24-7 The Modern Data Company simplifies how organizations manage, access, and interact with data using its DataOS (data operating system) that unifies data silos, at scale. It provides ontology support, graph modeling, and a virtual data tier (e.g. a customer 360 model). From a technical point of view, it closes the gap from conceptual to physical data model. Users can define conceptually what they want and its software traverses and integrates data. DataOS provides a structured, repeatable approach to data integration that enhances agility and ensures high-quality outputs. This shift from traditional pipeline management to data products allows for more efficient data operations, as each 'product' is designed with a specific purpose and standardized interfaces, ensuring consistency across different uses and applications. With DataOS, businesses can expect a transformative impact on their data strategies, marked by increased efficiency and a robust framework for handling complex data ecosystems, allowing for more and faster iterations of conceptual models. About The Modern Data Company The Modern Data Company, with its flagship product DataOS, revolutionizes the creation of data products. DataOS® is engineered to build and manage comprehensive data products to foster data mesh adoption, propelling organizations towards a data-driven future. DataOS directly addresses key AI/ML and LLM challenges: ensuring quality data, scaling computational resources, and integrating seamlessly into business processes. In our commitment to provide open systems, we have created an open data developer platform specification that is gaining wide industry support.

Read More

Big Data Management

data.world Integrates with Snowflake Data Quality Metrics to Bolster Data Trust

data.world | January 24, 2024

data.world, the data catalog platform company, today announced an integration with Snowflake, the Data Cloud company, that brings new data quality metrics and measurement capabilities to enterprises. The data.world Snowflake Collector now empowers enterprise data teams to measure data quality across their organization on-demand, unifying data quality and analytics. Customers can now achieve greater trust in their data quality and downstream analytics to support mission-critical applications, confident data-driven decision-making, and AI initiatives. Data quality remains one of the top concerns for chief data officers and a critical barrier to creating a data-driven culture. Traditionally, data quality assurance has relied on manual oversight – a process that’s tedious and fraught with inefficacy. The data.world Data Catalog Platform now delivers Snowflake data quality metrics directly to customers, streamlining quality assurance timelines and accelerating data-first initiatives. Data consumers can access contextual information in the catalog or directly within tools such as Tableau and PowerBI via Hoots – data.world’s embedded trust badges – that broadcast data health status and catalog context, bolstering transparency and trust. Additionally, teams can link certification and DataOps workflows to Snowflake's data quality metrics to automate manual workflows and quality alerts. Backed by a knowledge graph architecture, data.world provides greater insight into data quality scores via intelligence on data provenance, usage, and context – all of which support DataOps and governance workflows. “Data trust is increasingly crucial to every facet of business and data teams are struggling to verify the quality of their data, facing increased scrutiny from developers and decision-makers alike on the downstream impacts of their work, including analytics – and soon enough, AI applications,” said Jeff Hollan, Director, Product Management at Snowflake. “Our collaboration with data.world enables data teams and decision-makers to verify and trust their data’s quality to use in mission-critical applications and analytics across their business.” “High-quality data has always been a priority among enterprise data teams and decision-makers. As enterprise AI ambitions grow, the number one priority is ensuring the data powering generative AI is clean, consistent, and contextual,” said Bryon Jacob, CTO at data.world. “Alongside Snowflake, we’re taking steps to ensure data scientists, analysts, and leaders can confidently feed AI and analytics applications data that delivers high-quality insights, and supports the type of decision-making that drives their business forward.” The integration builds on the robust collaboration between data.world and Snowflake. Most recently, the companies announced an exclusive offering for joint customers, streamlining adoption timelines and offering a new attractive price point. The data.world's knowledge graph-powered data catalog already offers unique benefits for Snowflake customers, including support for Snowpark. This offering is now available to all data.world enterprise customers using the Snowflake Collector, as well as customers taking advantage of the Snowflake-only offering. To learn more about the data quality integration or the data.world data catalog platform, visit data.world. About data.world data.world is the data catalog platform built for your AI future. Its cloud-native SaaS (software-as-a-service) platform combines a consumer-grade user experience with a powerful Knowledge Graph to deliver enhanced data discovery, agile data governance, and actionable insights. data.world is a Certified B Corporation and public benefit corporation and home to the world’s largest collaborative open data community with more than two million members, including ninety percent of the Fortune 500. Our company has 76 patents and has been named one of Austin’s Best Places to Work seven years in a row.

Read More

Data Architecture

SingleStore Announces Real-time Data Platform to Further Accelerate AI, Analytics and Application Development

SingleStore | January 25, 2024

SingleStore, the database that allows you to transact, analyze and contextualize data, today announced powerful new capabilities — making it the industry’s only real-time data platform. With its latest release, dubbed SingleStore Pro Max, the company announced ground-breaking features like indexed vector search, an on-demand compute service for GPUs/ CPUs and a new free shared tier, among several other innovative new products. Together, these capabilities shrink development cycles while providing the performance and scale that customers need for building applications. In an explosive generative AI landscape, companies are looking for a modern data platform that’s ready for enterprise AI use cases — one with best-available tooling to accelerate development, simultaneously allowing them to marry structured or semi-structured data residing in enterprise systems with unstructured data lying in data lakes. “We believe that a data platform should both create new revenue streams while also decreasing technological costs and complexity for customers. And this can only happen with simplicity at the core,” said Raj Verma, CEO, SingleStore. “This isn’t just a product update, it’s a quantum leap… SingleStore is offering truly transformative capabilities in a single platform for customers to build all kinds of real-time applications, AI or otherwise.” “At Adobe, we aim to change the world through digital experiences,” said Matt Newman, Principal Data Architect, Adobe. “SingleStore’s latest release is exciting as it pushes what is possible when it comes to database technology, real-time analytics and building modern applications that support AI workloads. We’re looking forward to these new features as more and more of our customers are seeking ways to take full advantage of generative Al capabilities.” Key new features launched include: Indexed vector search. SingleStore has announced support for vector search using Approximate Nearest Neighbor (ANN) vector indexing algorithms, leading to 800-1,000x faster vector search performance than precise methods (KNN). With both full-text and indexed vector search capabilities, SingleStore offers developers true hybrid search that takes advantage of the full power of SQL for queries, joins, filters and aggregations. These capabilities firmly place SingleStore above vector-only databases that require niche query languages and are not designed to meet enterprise security and resiliency needs. Free shared tier. SingleStore has announced a new cloud-based Free Shared Tier that’s designed for startups and developers to quickly bring their ideas to life — without the need to commit to a paid plan. On-demand compute service for GPUs and CPUs. SingleStore announces a compute service that works alongside SingleStore’s native Notebooks to let developers spin up GPUs and CPUs to run database-adjacent workloads including data preparation, ETL, third-party native application frameworks, etc. This capability brings compute to algorithms, rather than the other way around, enabling developers to build highly performant AI applications safely and securely using SingleStore — without unnecessary data movement. New CDC capabilities for data ingest and egress. To ease the burden and costs of moving data in and out of SingleStore, SingleStore is adding native capabilities for real-time Change Data Capture (CDC) in for MongoDB®, MySQL and ingestion from Apache Iceberg without requiring other third party CDC tools. SingleStore will also support CDC out capabilities that ease migrations and enable the use of SingleStore as a source for other applications and databases like data warehouses and lakehouses. SingleStore Kai™. Now generally available, and ready for both analytical and transactional processing for apps originally built on MongoDB. Announced in public preview in early 2023, SingleStore Kai is an API to deliver over 100x faster analytics on MongoDB® with no query changes or data transformations required. Today, SingleStore Kai supports BSON data format natively, has improved transactional performance, increased performance for arrays and offers industry-leading compatibility with MongoDB query language. Projections: To further advance as the world’s fastest HTAP database, SingleStore has added Projections. Projections allow developers to greatly speed up range filters and group by operations by introducing secondary sort and shard keys. Query performance improvements range from 2-3x or more, depending on the size of the table. With this latest release, SingleStore becomes the industry’s first and only real-time data platform designed for all applications, analytics and AI. SingleStore supports high-throughput ingest performance, ACID transactions and low-latency analytics; and structured, semi-structured (JSON, BSON, text) and unstructured data (vector embeddings of audio, video, images, PDFs, etc.). Finally, SingleStore’s data platform is designed not just with developers in mind, but also ML engineers, data engineers and data scientists. “Our new features and capabilities advance SingleStore’s mission of offering a real-time data platform for the next wave of gen AI and data applications,” said Nadeem Asghar, SVP, Product Management + Strategy at SingleStore. “New features, including vector search, Projections, Apache Iceberg, Scheduled Notebooks, autoscaling, GPU compute services, SingleStore Kai™, and the Free Shared Tier allow startups — as well as global enterprises — to quickly build and scale enterprise-grade real-time AI applications. We make data integration with third-party databases easy with both CDC in and CDC out support.” "Although generative AI, LLM, and vector search capabilities are early stage, they promise to deliver a richer data experience with translytical architecture," states the 2023 report, “Translytical Architecture 2.0 Evolves To Support Distributed, Multimodel, And AI Capabilities,” authored by Noel Yuhanna, Vice President and Principal Analyst at Forrester Research. "Generative AI and LLM can help democratize data through natural language query (NLQ), offering a ChatGPT-like interface. Also, vector storage and index can be leveraged to perform similarity searches to support data intelligence." SingleStore has been on a fast track leading innovation around generative AI. The company’s product evolution has been accompanied by high-momentum growth in customers and surpassing $100M in ARR late last year. SingleStore also recently ranked #2 in the emerging category of vector databases, and was recognized by TrustRadius as a top vector database in 2023. Finally, SingleStore was a winner of InfoWorld’s Technology of the year in the database category. To learn more about SingleStore visit here. About SingleStore SingleStore empowers the world’s leading organizations to build and scale modern applications using the only database that allows you to transact, analyze and contextualize data in real time. With streaming data ingestion, support for both transactions and analytics, horizontal scalability and hybrid vector search capabilities, SingleStore helps deliver 10-100x better performance at 1/3 the costs compared to legacy architectures. Hundreds of customers worldwide — including Fortune 500 companies and global data leaders — use SingleStore to power real-time applications and analytics. Learn more at singlestore.com. Follow us @SingleStoreDB on Twitter or visit www.singlestore.com.

Read More