Data scientists’ time is valuable. Computing resources are expensive. With only 87% of projects ever making it to production (Source: VentureBeat), organizations often overcommit to costly projects that bear little fruit. Data science teams need a way to assess project feasibility without diving head first.
Watch Now
As organizations continue to accumulate data from various sources, it is vital to have a plan to use that data constructively. Data analytics uncovers your organization's past story to extrapolate what the future could look like for your organization. Watch the On-Demand Webinar now.
Watch Now
DATAVERSITY
If your organization is in a highly-regulated industry or relies on data for competitive advantage data governance is undoubtedly a top priority. Whether you’re focused on “defensive” data governance (supporting regulatory compliance and risk management) or “offensive” data governance (extracting the maximum value from your data assets, and minimizing the cost of bad data), data quality plays a critical role in ensuring success.
Watch Now
tdwi.org
With data coming from so many different sources nowadays (both old and new, both internal and external), it is inevitable that data will arrive in many different structures, schema, and formats, with other variables for latency, concurrency, and requirements for storage and processing. When data types are extremely diverse and combined, we now call it “hybrid data.” This usually drives users to deploy many types of databases and different platforms to capture, store, process, and analyze the data, which in turn results in hybrid data management architectures.
Watch Now