Deep Learning System Can Accurately Predict Extreme Weather

Engineers at Rice University have developed a deep learning system that is capable of accurately predicting extreme weather events up to five days in advance. The system, which taught itself, only requires minimal information about current weather conditions in order to make the predictions.Part of the system’s training involves examining hundreds of pairs of maps, and each map indicates surface temperatures and air pressures at five-kilometers height. Those conditions are shown several days apart. The training also presents scenarios that produced extreme weather, such as hot and cold spells that can cause heat waves and winter storms. Upon completing the training, the deep learning system was able to make five-day forecasts of extreme weather based on maps it had not previously seen, with an accuracy rate of 85%.According to Pedram Hassanzadeh, co-author of the study which was published online in the American Geophysical Union’s Journal of Advances in Modeling Earth Systems, the system could be used as a tool and act as an early warning for weather forecasters. It will be especially useful for learning more about certain atmospheric conditions that cause extreme weather scenarios. Because of the invention of computer-based numerical weather prediction (NWP) in the 1950s, day-to-day weather forecasts have continued to improve. However, NWP is not able to make reliable predictions about extreme weather events, such as heat waves.

Spotlight

Other News

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More